192 research outputs found

    Positivstellensatz and flat functionals on path *-algebras

    Get PDF
    We consider the class of non-commutative *-algebras which are path algebras of doubles of quivers with the natural involutions. We study the problem of extending positive truncated functionals on such *-algebras. An analog of the solution of the truncated Hamburger moment problem by Curto and Fialkow for path *-algebras is presented and non-commutative positivstellensatz is proved. We aslo present an analog of the flat extension theorem of Curto and Fialkow for this class of algebras.Comment: corrected typo

    Half-integrality, LP-branching and FPT Algorithms

    Full text link
    A recent trend in parameterized algorithms is the application of polytope tools (specifically, LP-branching) to FPT algorithms (e.g., Cygan et al., 2011; Narayanaswamy et al., 2012). However, although interesting results have been achieved, the methods require the underlying polytope to have very restrictive properties (half-integrality and persistence), which are known only for few problems (essentially Vertex Cover (Nemhauser and Trotter, 1975) and Node Multiway Cut (Garg et al., 1994)). Taking a slightly different approach, we view half-integrality as a \emph{discrete} relaxation of a problem, e.g., a relaxation of the search space from {0,1}V\{0,1\}^V to {0,1/2,1}V\{0,1/2,1\}^V such that the new problem admits a polynomial-time exact solution. Using tools from CSP (in particular Thapper and \v{Z}ivn\'y, 2012) to study the existence of such relaxations, we provide a much broader class of half-integral polytopes with the required properties, unifying and extending previously known cases. In addition to the insight into problems with half-integral relaxations, our results yield a range of new and improved FPT algorithms, including an O(Σ2k)O^*(|\Sigma|^{2k})-time algorithm for node-deletion Unique Label Cover with label set Σ\Sigma and an O(4k)O^*(4^k)-time algorithm for Group Feedback Vertex Set, including the setting where the group is only given by oracle access. All these significantly improve on previous results. The latter result also implies the first single-exponential time FPT algorithm for Subset Feedback Vertex Set, answering an open question of Cygan et al. (2012). Additionally, we propose a network flow-based approach to solve some cases of the relaxation problem. This gives the first linear-time FPT algorithm to edge-deletion Unique Label Cover.Comment: Added results on linear-time FPT algorithms (not present in SODA paper

    LNCS

    Get PDF
    Let C={C1,...,Cn} denote a collection of translates of a regular convex k-gon in the plane with the stacking order. The collection C forms a visibility clique if for everyi < j the intersection Ci and (Ci ∩ Cj)\⋃i<l<jCl =∅.elements that are stacked between them, i.e., We show that if C forms a visibility clique its size is bounded from above by O(k4) thereby improving the upper bound of 22k from the aforementioned paper. We also obtain an upper bound of 22(k/2)+2 on the size of a visibility clique for homothetes of a convex (not necessarily regular) k-gon

    Minimal external representations of tropical polyhedra

    Get PDF
    Tropical polyhedra are known to be representable externally, as intersections of finitely many tropical half-spaces. However, unlike in the classical case, the extreme rays of their polar cones provide external representations containing in general superfluous half-spaces. In this paper, we prove that any tropical polyhedral cone in R^n (also known as "tropical polytope" in the literature) admits an essentially unique minimal external representation. The result is obtained by establishing a (partial) anti-exchange property of half-spaces. Moreover, we show that the apices of the half-spaces appearing in such non-redundant external representations are vertices of the cell complex associated with the polyhedral cone. We also establish a necessary condition for a vertex of this cell complex to be the apex of a non-redundant half-space. It is shown that this condition is sufficient for a dense class of polyhedral cones having "generic extremities".Comment: v1: 32 pages, 10 figures; v2: minor revision, 34 pages, 10 figure

    Combinatorics

    Get PDF
    Combinatorics is a fundamental mathematical discipline that focuses on the study of discrete objects and their properties. The present workshop featured research in such diverse areas as Extremal, Probabilistic and Algebraic Combinatorics, Graph Theory, Discrete Geometry, Combinatorial Optimization, Theory of Computation and Statistical Mechanics. It provided current accounts of exciting developments and challenges in these fields and a stimulating venue for a variety of fruitful interactions. This is a report on the meeting, containing extended abstracts of the presentations and a summary of the problem session

    Twin-width VIII: delineation and win-wins

    Get PDF
    We introduce the notion of delineation. A graph class C\mathcal C is said delineated if for every hereditary closure D\mathcal D of a subclass of C\mathcal C, it holds that D\mathcal D has bounded twin-width if and only if D\mathcal D is monadically dependent. An effective strengthening of delineation for a class C\mathcal C implies that tractable FO model checking on C\mathcal C is perfectly understood: On hereditary closures D\mathcal D of subclasses of C\mathcal C, FO model checking is fixed-parameter tractable (FPT) exactly when D\mathcal D has bounded twin-width. Ordered graphs [BGOdMSTT, STOC '22] and permutation graphs [BKTW, JACM '22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we show that segment graphs, directed path graphs, and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA '21]. We show that Kt,tK_{t,t}-free segment graphs, and axis-parallel HtH_t-free unit segment graphs have bounded twin-width, where HtH_t is the half-graph or ladder of height tt. In contrast, axis-parallel H4H_4-free two-lengthed segment graphs have unbounded twin-width. Our new results, combined with the known FPT algorithm for FO model checking on graphs given with O(1)O(1)-sequences, lead to win-win arguments. For instance, we derive FPT algorithms for kk-Ladder on visibility graphs of 1.5D terrains, and kk-Independent Set on visibility graphs of simple polygons.Comment: 51 pages, 19 figure
    corecore