869 research outputs found

    A Thesis: A CRYPTOGRAPHIC STUDY OF SOME DIGITAL SIGNATURE SCHEMES.

    Get PDF
    In this thesis, we propose some directed signature schemes. In addition, we have discussed their applications in different situations. In this thesis, we would like to discuss the security aspects during the design process of the proposed directed digital signature schemes. The security of the most digital signature schemes widely use in practice is based on the two difficult problems, viz; the problem of factoring integers (The RSA scheme) and the problem of finding discrete logarithms over finite fields (The ElGamal scheme). The proposed works in this thesis is divided into seven chapters

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    Security systems based on Gaussian integers : Analysis of basic operations and time complexity of secret transformations

    Get PDF
    Many security algorithms currently in use rely heavily on integer arithmetic modulo prime numbers. Gaussian integers can be used with most security algorithms that are formulated for real integers. The aim of this work is to study the benefits of common security protocols with Gaussian integers. Although the main contribution of this work is to analyze and improve the application of Gaussian integers for various public key (PK) algorithms, Gaussian integers were studied in the context of image watermarking as well. The significant benefits of the application of Gaussian integers become apparent when they are used with Discrete Logarithm Problem (DLP) based PK algorithms. In order to quantify the complexity of the Gaussian integer DLP, it is reduced to two other well known problems: DLP for Lucas sequences and the real integer DLP. Additionally, a novel exponentiation algorithm for Gaussian integers, called Lucas sequence Exponentiation of Gaussian integers (LSEG) is introduced and its performance assessed, both analytically and experimentally. The LSEG achieves about 35% theoretical improvement in CPU time over real integer exponentiation. Under an implementation with the GMP 5.0.1 library, it outperformed the GMP\u27s mpz_powm function (the particularly efficient modular exponentiation function that comes with the GMP library) by 40% for bit sizes 1000-4000, because of low overhead associated with LSEG. Further improvements to real execution time can be easily achieved on multiprocessor or multicore platforms. In fact, over 50% improvement is achieved with a parallelized implementation of LSEG. All the mentioned improvements do not require any special hardware or software and are easy to implement. Furthermore, an efficient way for finding generators for DLP based PK algorithms with Gaussian integers is presented. In addition to DLP based PK algorithms, applications of Gaussian integers for factoring-based PK cryptosystems are considered. Unfortunately, the advantages of Gaussian integers for these algorithms are not as clear because the extended order of Gaussian integers does not directly come into play. Nevertheless, this dissertation describes the Extended Square Root algorithm for Gaussian integers used to extend the Rabin Cryptography algorithm into the field of Gaussian integers. The extended Rabin Cryptography algorithm with Gaussian integers allows using fewer preset bits that are required by the algorithm to guard against various attacks. Additionally, the extension of RSA into the domain of Gaussian integers is analyzed. The extended RSA algorithm could add security only if breaking the original RSA is not as hard as factoring. Even in this case, it is not clear whether the extended algorithm would increase security. Finally, the randomness property of the Gaussian integer exponentiation is utilized to derive a novel algorithm to rearrange the image pixels to be used for image watermarking. The new algorithm is more efficient than the one currently used and it provides a degree of cryptoimmunity. The proposed method can be used to enhance most picture watermarking algorithms

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics
    • …
    corecore