27,297 research outputs found

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Grassmann Integral Representation for Spanning Hyperforests

    Full text link
    Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff's matrix-tree theorem. Furthermore, we show that the class of integrals describing unrooted spanning (hyper)forests is induced by a theory with an underlying OSP(1|2) supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J. Phys.

    Notes on higher-dimensional partitions

    Full text link
    We show the existence of a series of transforms that capture several structures that underlie higher-dimensional partitions. These transforms lead to a sequence of triangles whose entries are given combinatorial interpretations as the number of particular types of skew Ferrers diagrams. The end result of our analysis is the existence of a triangle, that we denote by F, which implies that the data needed to compute the number of partitions of a given positive integer is reduced by a factor of half. The number of spanning rooted forests appears intriguingly in a family of entries in the triangle F. Using modifications of an algorithm due to Bratley-McKay, we are able to directly enumerate entries in some of the triangles. As a result, we have been able to compute numbers of partitions of positive integers <= 25 in any dimension.Comment: 36 pages; Mathematica file attached; See http://www.physics.iitm.ac.in/~suresh/partitions.html to generate numbers of partition

    Spanning forests and the vector bundle Laplacian

    Full text link
    The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. This theory gives a natural generalization of the spanning tree process adapted to graphs embedded on surfaces. We give a number of other applications, for example, we compute the probability that a loop-erased random walk on a planar graph between two vertices on the outer boundary passes left of two given faces. This probability cannot be computed using the standard Laplacian alone.Comment: Published in at http://dx.doi.org/10.1214/10-AOP596 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore