9,622 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Modeling networks of spiking neurons as interacting processes with memory of variable length

    Get PDF
    We consider a new class of non Markovian processes with a countable number of interacting components, both in discrete and continuous time. Each component is represented by a point process indicating if it has a spike or not at a given time. The system evolves as follows. For each component, the rate (in continuous time) or the probability (in discrete time) of having a spike depends on the entire time evolution of the system since the last spike time of the component. In discrete time this class of systems extends in a non trivial way both Spitzer's interacting particle systems, which are Markovian, and Rissanen's stochastic chains with memory of variable length which have finite state space. In continuous time they can be seen as a kind of Rissanen's variable length memory version of the class of self-exciting point processes which are also called "Hawkes processes", however with infinitely many components. These features make this class a good candidate to describe the time evolution of networks of spiking neurons. In this article we present a critical reader's guide to recent papers dealing with this class of models, both in discrete and in continuous time. We briefly sketch results concerning perfect simulation and existence issues, de-correlation between successive interspike intervals, the longtime behavior of finite non-excited systems and propagation of chaos in mean field systems
    • …
    corecore