45,437 research outputs found

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    Privacy-Preserving Distributed Optimization via Subspace Perturbation: A General Framework

    Get PDF
    As the modern world becomes increasingly digitized and interconnected, distributed signal processing has proven to be effective in processing its large volume of data. However, a main challenge limiting the broad use of distributed signal processing techniques is the issue of privacy in handling sensitive data. To address this privacy issue, we propose a novel yet general subspace perturbation method for privacy-preserving distributed optimization, which allows each node to obtain the desired solution while protecting its private data. In particular, we show that the dual variables introduced in each distributed optimizer will not converge in a certain subspace determined by the graph topology. Additionally, the optimization variable is ensured to converge to the desired solution, because it is orthogonal to this non-convergent subspace. We therefore propose to insert noise in the non-convergent subspace through the dual variable such that the private data are protected, and the accuracy of the desired solution is completely unaffected. Moreover, the proposed method is shown to be secure under two widely-used adversary models: passive and eavesdropping. Furthermore, we consider several distributed optimizers such as ADMM and PDMM to demonstrate the general applicability of the proposed method. Finally, we test the performance through a set of applications. Numerical tests indicate that the proposed method is superior to existing methods in terms of several parameters like estimated accuracy, privacy level, communication cost and convergence rate

    Privacy and Cloud Computing in Public Schools

    Get PDF
    Today, data driven decision-making is at the center of educational policy debates in the United States. School districts are increasingly turning to rapidly evolving technologies and cloud computing to satisfy their educational objectives and take advantage of new opportunities for cost savings, flexibility, and always-available service among others. As public schools in the United States rapidly adopt cloud-computing services, and consequently transfer increasing quantities of student information to third-party providers, privacy issues become more salient and contentious. The protection of student privacy in the context of cloud computing is generally unknown both to the public and to policy-makers. This study thus focuses on K-12 public education and examines how school districts address privacy when they transfer student information to cloud computing service providers. The goals of the study are threefold: first, to provide a national picture of cloud computing in public schools; second, to assess how public schools address their statutory obligations as well as generally accepted privacy principles in their cloud service agreements; and, third, to make recommendations based on the findings to improve the protection of student privacy in the context of cloud computing. Fordham CLIP selected a national sample of school districts including large, medium and small school systems from every geographic region of the country. Using state open public record laws, Fordham CLIP requested from each selected district all of the district’s cloud service agreements, notices to parents, and computer use policies for teachers. All of the materials were then coded against a checklist of legal obligations and privacy norms. The purpose for this coding was to enable a general assessment and was not designed to provide a compliance audit of any school district nor of any particular vendor.https://ir.lawnet.fordham.edu/clip/1001/thumbnail.jp

    Privacy and Cloud Computing in Public Schools

    Get PDF
    Today, data driven decision-making is at the center of educational policy debates in the United States. School districts are increasingly turning to rapidly evolving technologies and cloud computing to satisfy their educational objectives and take advantage of new opportunities for cost savings, flexibility, and always-available service among others. As public schools in the United States rapidly adopt cloud-computing services, and consequently transfer increasing quantities of student information to third-party providers, privacy issues become more salient and contentious. The protection of student privacy in the context of cloud computing is generally unknown both to the public and to policy-makers. This study thus focuses on K-12 public education and examines how school districts address privacy when they transfer student information to cloud computing service providers. The goals of the study are threefold: first, to provide a national picture of cloud computing in public schools; second, to assess how public schools address their statutory obligations as well as generally accepted privacy principles in their cloud service agreements; and, third, to make recommendations based on the findings to improve the protection of student privacy in the context of cloud computing. Fordham CLIP selected a national sample of school districts including large, medium and small school systems from every geographic region of the country. Using state open public record laws, Fordham CLIP requested from each selected district all of the district’s cloud service agreements, notices to parents, and computer use policies for teachers. All of the materials were then coded against a checklist of legal obligations and privacy norms. The purpose for this coding was to enable a general assessment and was not designed to provide a compliance audit of any school district nor of any particular vendor.https://ir.lawnet.fordham.edu/clip/1001/thumbnail.jp

    The future of social is personal: the potential of the personal data store

    No full text
    This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges
    corecore