9,007 research outputs found

    Undirected Graphs of Entanglement Two

    Full text link
    Entanglement is a complexity measure of directed graphs that origins in fixed point theory. This measure has shown its use in designing efficient algorithms to verify logical properties of transition systems. We are interested in the problem of deciding whether a graph has entanglement at most k. As this measure is defined by means of games, game theoretic ideas naturally lead to design polynomial algorithms that, for fixed k, decide the problem. Known characterizations of directed graphs of entanglement at most 1 lead, for k = 1, to design even faster algorithms. In this paper we present an explicit characterization of undirected graphs of entanglement at most 2. With such a characterization at hand, we devise a linear time algorithm to decide whether an undirected graph has this property

    From entangled codipterous coalgebras to coassociative manifolds

    Full text link
    We construct from coassociative coalgebras, bialgebras, Hopf algebras, new objects such as Poisson algebras, Leibniz algebras defined by J-L Loday and M. Ronco and explore the notion of coassociative manifolds.Comment: 25 pages, 13 figure

    Quantum Capacities for Entanglement Networks

    Full text link
    We discuss quantum capacities for two types of entanglement networks: Q\mathcal{Q} for the quantum repeater network with free classical communication, and R\mathcal{R} for the tensor network as the rank of the linear operation represented by the tensor network. We find that Q\mathcal{Q} always equals R\mathcal{R} in the regularized case for the samenetwork graph. However, the relationships between the corresponding one-shot capacities Q1\mathcal{Q}_1 and R1\mathcal{R}_1 are more complicated, and the min-cut upper bound is in general not achievable. We show that the tensor network can be viewed as a stochastic protocol with the quantum repeater network, such that R1\mathcal{R}_1 is a natural upper bound of Q1\mathcal{Q}_1. We analyze the possible gap between R1\mathcal{R}_1 and Q1\mathcal{Q}_1 for certain networks, and compare them with the one-shot classical capacity of the corresponding classical network

    Bipartite quantum states and random complex networks

    Full text link
    We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs we derive an analytic expression for the averaged entanglement entropy Sˉ\bar S while for general complex networks we rely on numerics. For large number of nodes nn we find a scaling Sˉclogn+ge\bar{S} \sim c \log n +g_e where both the prefactor cc and the sub-leading O(1) term geg_e are a characteristic of the different classes of complex networks. In particular, geg_e encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool in the analysis of large complex networks with non-trivial topological properties.Comment: 4 pages, 3 figure

    Entanglement dynamics and quasi-periodicity in discrete quantum walks

    Full text link
    We study the entanglement dynamics of discrete time quantum walks acting on bounded finite sized graphs. We demonstrate that, depending on system parameters, the dynamics may be monotonic, oscillatory but highly regular, or quasi-periodic. While the dynamics of the system are not chaotic since the system comprises linear evolution, the dynamics often exhibit some features similar to chaos such as high sensitivity to the system's parameters, irregularity and infinite periodicity. Our observations are of interest for entanglement generation, which is one primary use for the quantum walk formalism. Furthermore, we show that the systems we model can easily be mapped to optical beamsplitter networks, rendering experimental observation of quasi-periodic dynamics within reach.Comment: 9 pages, 8 figure
    corecore