105,650 research outputs found

    Sizing the length of complex networks

    Full text link
    Among all characteristics exhibited by natural and man-made networks the small-world phenomenon is surely the most relevant and popular. But despite its significance, a reliable and comparable quantification of the question `how small is a small-world network and how does it compare to others' has remained a difficult challenge to answer. Here we establish a new synoptic representation that allows for a complete and accurate interpretation of the pathlength (and efficiency) of complex networks. We frame every network individually, based on how its length deviates from the shortest and the longest values it could possibly take. For that, we first had to uncover the upper and the lower limits for the pathlength and efficiency, which indeed depend on the specific number of nodes and links. These limits are given by families of singular configurations that we name as ultra-short and ultra-long networks. The representation here introduced frees network comparison from the need to rely on the choice of reference graph models (e.g., random graphs and ring lattices), a common practice that is prone to yield biased interpretations as we show. Application to empirical examples of three categories (neural, social and transportation) evidences that, while most real networks display a pathlength comparable to that of random graphs, when contrasted against the absolute boundaries, only the cortical connectomes prove to be ultra-short

    Quantum ergodicity for quantum graphs without back-scattering

    Get PDF
    We give an estimate of the quantum variance for dd-regular graphs quantised with boundary scattering matrices that prohibit back-scattering. For families of graphs that are expanders, with few short cycles, our estimate leads to quantum ergodicity for these families of graphs. Our proof is based on a uniform control of an associated random walk on the bonds of the graph. We show that recent constructions of Ramanujan graphs, and asymptotically almost surely, random dd-regular graphs, satisfy the necessary conditions to conclude that quantum ergodicity holds.Comment: 28 pages, 5 figure

    Counting Hamilton cycles in sparse random directed graphs

    Full text link
    Let D(n,p) be the random directed graph on n vertices where each of the n(n-1) possible arcs is present independently with probability p. A celebrated result of Frieze shows that if p(logn+ω(1))/np\ge(\log n+\omega(1))/n then D(n,p) typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in D(n,p) is typically n!(p(1+o(1)))nn!(p(1+o(1)))^{n}. We also prove a hitting-time version of this statement, showing that in the random directed graph process, as soon as every vertex has in-/out-degrees at least 1, there are typically n!(logn/n(1+o(1)))nn!(\log n/n(1+o(1)))^{n} directed Hamilton cycles
    corecore