64,340 research outputs found

    Gravity-Inspired Graph Autoencoders for Directed Link Prediction

    Full text link
    Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods. In particular, graph AE and VAE were successfully leveraged to tackle the challenging link prediction problem, aiming at figuring out whether some pairs of nodes from a graph are connected by unobserved edges. However, these models focus on undirected graphs and therefore ignore the potential direction of the link, which is limiting for numerous real-life applications. In this paper, we extend the graph AE and VAE frameworks to address link prediction in directed graphs. We present a new gravity-inspired decoder scheme that can effectively reconstruct directed graphs from a node embedding. We empirically evaluate our method on three different directed link prediction tasks, for which standard graph AE and VAE perform poorly. We achieve competitive results on three real-world graphs, outperforming several popular baselines.Comment: ACM International Conference on Information and Knowledge Management (CIKM 2019

    Adversarial Directed Graph Embedding

    Full text link
    Node representation learning for directed graphs is critically important to facilitate many graph mining tasks. To capture the directed edges between nodes, existing methods mostly learn two embedding vectors for each node, source vector and target vector. However, these methods learn the source and target vectors separately. For the node with very low indegree or outdegree, the corresponding target vector or source vector cannot be effectively learned. In this paper, we propose a novel Directed Graph embedding framework based on Generative Adversarial Network, called DGGAN. The main idea is to use adversarial mechanisms to deploy a discriminator and two generators that jointly learn each node's source and target vectors. For a given node, the two generators are trained to generate its fake target and source neighbor nodes from the same underlying distribution, and the discriminator aims to distinguish whether a neighbor node is real or fake. The two generators are formulated into a unified framework and could mutually reinforce each other to learn more robust source and target vectors. Extensive experiments show that DGGAN consistently and significantly outperforms existing state-of-the-art methods across multiple graph mining tasks on directed graphs.Comment: 8 pages, 5 figure

    Optimal Embedding of Functions for In-Network Computation: Complexity Analysis and Algorithms

    Full text link
    We consider optimal distributed computation of a given function of distributed data. The input (data) nodes and the sink node that receives the function form a connected network that is described by an undirected weighted network graph. The algorithm to compute the given function is described by a weighted directed acyclic graph and is called the computation graph. An embedding defines the computation communication sequence that obtains the function at the sink. Two kinds of optimal embeddings are sought, the embedding that---(1)~minimizes delay in obtaining function at sink, and (2)~minimizes cost of one instance of computation of function. This abstraction is motivated by three applications---in-network computation over sensor networks, operator placement in distributed databases, and module placement in distributed computing. We first show that obtaining minimum-delay and minimum-cost embeddings are both NP-complete problems and that cost minimization is actually MAX SNP-hard. Next, we consider specific forms of the computation graph for which polynomial time solutions are possible. When the computation graph is a tree, a polynomial time algorithm to obtain the minimum delay embedding is described. Next, for the case when the function is described by a layered graph we describe an algorithm that obtains the minimum cost embedding in polynomial time. This algorithm can also be used to obtain an approximation for delay minimization. We then consider bounded treewidth computation graphs and give an algorithm to obtain the minimum cost embedding in polynomial time

    Symmetrization for Embedding Directed Graphs

    Full text link
    Recently, one has seen a surge of interest in developing such methods including ones for learning such representations for (undirected) graphs (while preserving important properties). However, most of the work to date on embedding graphs has targeted undirected networks and very little has focused on the thorny issue of embedding directed networks. In this paper, we instead propose to solve the directed graph embedding problem via a two-stage approach: in the first stage, the graph is symmetrized in one of several possible ways, and in the second stage, the so-obtained symmetrized graph is embedded using any state-of-the-art (undirected) graph embedding algorithm. Note that it is not the objective of this paper to propose a new (undirected) graph embedding algorithm or discuss the strengths and weaknesses of existing ones; all we are saying is that whichever be the suitable graph embedding algorithm, it will fit in the above proposed symmetrization framework.Comment: has been accepted to The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019) Student Abstract and Poster Progra
    corecore