14,755 research outputs found

    High-resolution 3D direct-write prototyping for healthcare applications

    Get PDF
    The healthcare sector has much to benefit from the vast array of novelties erupting from the manufacturing world. 3D printing (additive manufacturing) is amongst the most promising recent inventions with much research concentrated around the various approaches of 3D printing and applying this effectively in the health sector. Amongst these methods, the direct-write assembly approach is a promising candidate for rapid prototyping and manufacturing of miniaturised medical devices/sensors and in particular, miniaturised flexible capacitive pressure sensors. Microstructuring the dielectric medium of capacitive pressure sensors enhances the sensitivity of the capacitive pressure sensor. The structuring has been predominantly achieved with photolithography and similar subtractive approaches. In this project high-resolution 3D direct write printing was used to fabricate structured dielectric mediums for capacitive pressure sensors. This involved the development and rheological characterisation of printability-tuned water soluble polyvinyl pyrrolidone (PVP) based inks (10%-30% polymer content) for stable high-resolution 3D printing. These inks were used to print water soluble micromoulds that were filled and cured with otherwise difficult to structure low G’ materials like PDMS. Our approach essentially decouples ink synthesis from printability at the micrometre scale. The developed micro moulding approach was employed for printing pyramidal micro moulds, that were used as templates for fabricating pyramid structured dielectric mediums for capacitive pressure sensing. The power of the approach was used to alter the microstructures and reap enhanced pressure sensing characteristics for effective miniaturised capacitive pressure sensors. A pressure sensing ring – that could be worn by doctors and surgeons – was prototyped with our approach and employed successfully to monitor in real-time the radial pulse signal of a 29 year old male volunteer. The print resolution of the inks was enhanced by formulating and rheologically characterising a PVP/PVDF polymer blend ink that would wet the printing nozzle less due to the hydrophobicity of the PVDF

    The STAR MAPS-based PiXeL detector

    Get PDF
    The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Custom built pixel sensors, their readout electronics and the detector mechanical structure are described in detail. Selected detector design aspects and production steps are presented. The detector operations during the three years of data taking (2014-2016) and the overall performance exceeding the design specifications are discussed in the conclusive sections of this paper

    Design and development of novel radio frequency identification (RFID) tag structures

    Get PDF
    The objective of the proposed research is to design and develop a series of radio frequency identification (RFID) tag structures that exhibit good performance characteristics with cost optimization and can be realized on flexible substrates such as liquid crystal polymer (LCP), paper-based substrate and magnetic composite material for conformal applications. The demand for flexible RFID tags has recently increased tremendously due to the requirements of automatic identification in various areas. Several major challenges existing in today's RFID technologies need to be addressed before RFID can eventually march into everyone's daily life, such as how to design high performance tag antennas with effective impedance matching for passive RFID IC chips to optimize the power performance, how to fabricate ultra-low-cost RFID tags in order to facilitate mass production, how to integrate sensors with passive RFID tags for pervasive sensing applications, and how to realize battery-free active RFID tags in which changing battery is not longer needed. In this research, different RFID tag designs are realized on flexible substrates. The design techniques presented set the framework for answering these technical challenges for which, the focus will be on RFID tag structure design, characterization and optimization from the perspectives of both costs involved and technical constraints.Ph.D.Committee Chair: Tentzeris, Manos; Committee Member: DeJean, Gerald; Committee Member: Ingram, Mary; Committee Member: Kavadias, Stylianos; Committee Member: Laskar, Jo

    B.O.G.G.L.E.S.: Boundary Optical GeoGraphic Lidar Environment System

    Get PDF
    The purpose of this paper is to describe a pseudo X-ray vision system that pairs a Lidar scanner with a visualization device. The system as a whole is referred to as B.O.G.G.L.E.S. There are several key factors that went into the development of this system and the background information and design approach are thoroughly described. B.O.G.G.L.E.S functionality is depicted through the use of design constraints and the analysis of test results. Additionally, many possible developments for B.O.G.G.L.E.S are proposed in the paper. This indicates that there are various avenues of improvement for this project that could be implemented in the future

    A Smart Implantable Bone Fixation Plate Providing Actuation and Load Monitoring for Orthopedic Fracture Healing

    Get PDF
    Fracture non-union occurs in roughly 5-10% of all fracture cases, and current interventions are both time-consuming and costly. There is therefore significant incentive to develop new tools to improve fracture healing outcomes. Several studies have shown that low-magnitude, high-frequency (LMHF) mechanical loading can promote faster healing and reduce the risk of refracture in critical-size long bone fractures. This is typically done using whole-body vibration, which may result in undesirable systemic effects on the rest of the body. This work discusses an implantable piezoelectric fixation plate that can both apply LMHF loading directly to the fracture site using flexible scheduling and indirectly monitor the progress of healing by using the increasing stiffness of the fracture callus. The design and performance of the piezoelectric bone plate show that the device can apply the target treatment and has the sensitivity to be used to observe the progress of healing. An accompanying telemetry system using BLE communication is also introduced which has a footprint of suitable size to be used in rodent studies and can provide the power necessary for piezoelectric actuation. These results pave the way for future studies regarding the efficacy and optimization of LMHF treatments in fracture healing models

    A Preventive Medicine Framework for Wearable Abiotic Glucose Detection System

    Get PDF
    In this work, we present a novel abiotic glucose fuel cell with battery-less remote access. In the presence of a glucose analyte, we characterized the power generation and biosensing capabilities. This system is developed on a flexible substrate in bacterial nanocellulose with gold nanoparticles used as a conductive ink for piezoelectric deposition based printing. The abiotic glucose fuel cell is constructed using colloidal platinum on gold (Au-co-Pt) and a composite of silver oxide nanoparticles and carbon nanotubes as the anodic and cathodic materials. At a concentration of 20 mM glucose, the glucose fuel cell produced a maximum open circuit voltage of 0.57 V and supplied a maximum short circuit current density of 0.581 mA/cm2 with a peak power density of 0.087 mW/cm2 . The system was characterized by testing its performance using electrochemical techniques like linear sweep voltammetry, cyclic voltammetry, chronoamperometry in the presence of various glucose level at the physiological temperatures. An open circuit voltage (Voc) of 0.43 V, short circuit current density (Isc) of 0.405 mA/cm2 , and maximum power density (Pmax) of 0.055 mW/cm2 at 0.23 V were achieved in the presence of 5 mM physiologic glucose. The results indicate that glucose fuel cells can be employed for the development of a self-powered glucose sensor. The glucose monitoring device demonstrated sensitivity of 1.87 uA/mMcm2 and a linear dynamic range of 1 mM to 45 mM with a correlation coefficient of 0.989 when utilized as a self-powered glucose sensor. For wireless communication, the incoming voltage from the abiotic fuel cell was fed to a low power microcontroller that enables battery less communication using NFC technology. The voltage translates to the NFC module as the digital signals, which are displayed on a custom-built android application. The digital signals are converted to respective glucose concentration using a correlation algorithm that allows data to be processed and recorded for further analysis. The android application is designed to record the time, date stamp, and other independent features (e.g. age, height, weight) with the glucose measurement to allow the end-user to keep track of their glucose levels regularly. Analytics based on in-vitro testing were conducted to build a machine learning model that enables future glucose prediction for 15, 30 or 60 minutes

    DOMESTIC GA$ MONITORING DEVICE

    Get PDF
    The goal of this project is to monitor the content of Liquified Petroleum Gas (LPG) in a cooking gas cylinder I LPG cylinder and alert user to replace the LPG cylinder when it is almost finish. This is to ensure that user would not be stuck in between cooking I heating I drying I grilling when the gas runs out. Based on Hooke's Law, the project will use compression spring to measure the weight of the LPG. The decreasing content of LPG in the LPG cylinder will affect the movements of the compression spring. A sensor which is a potentiometer is used to detect the decreased in weight of the LPG content. As the weight decreases, the potentiometer will rotate according to the spring movements. The signal from the sensor will be sent to the programming circuit via wireless Radio Frequency (RF) transmission and displayed the result on Portable display consists of Liquid Crystal Display (LCD), Light Emitting Diode (LED) and Buzzer. The buzzer will be used to alert the user once the LPG reached the minimum level

    3-D Printed Strain Sensor for Structural Health Monitoring

    Full text link
    Additive manufacturing, or 3D printing, is evolving from a technology that can only aid rapid prototyping, to one that can be used to directly manufacture large-scale, real-world equipment. Gravity Separation Spirals (GSS) are vital to the mining industry for separating mineral-rich slurry into its different density components. In order to overcome inherent drawbacks of the traditional mould base manufacturing methods, including significant tooling costs, limited customisation and worker exposure to hazardous materials, a 3D printer is under development to directly print spirals. By embedding small Internet of Things (IoT) sensors inside the GSS, it is possible to remotely determine the operation conditions, predict faults, and use collected data to optimise production output. This work presents a 3D printed strain sensor, which can be directly printed into the GSS. This approach uses a carbon-based conductive filament to print a strain gauge on top of a Polylactic Acid (PLA) base material. Printed sensors have been tested using an Instron E10000 testing machine with an optical extensometer to improve accuracy. Testing was conducted by both loading and unloading conditions to understand the effect of hysteresis. Test results show a near-linear relationship between strain and measured resistance, and show a 6.05% increase in resistance after the test, which indicates minor hysteresis. Moreover, the impact of viscoelastic behaviour is identified, where the resistance response lags the strain. Results from both conductive and non-conductive material show the impact of the conductive carbon upon the tensile strength, which will help to inform future decisions about sensor placement
    • …
    corecore