218 research outputs found

    AODV enhanced by Smart Antennas

    Get PDF

    Enhancing wireless local area networks by leveraging diverse frequency resources

    Get PDF
    In this thesis, signal propagation variations that are experience over the frequency resources of IEEE 802.11 Wireless Local Area Networks (WLANs) are studied. It is found that exploitation of these variations can improve several aspects of wireless communication systems. To this aim, frequency varying behavior is addressed at two different levels. First, the intra-channel scale is considered, i.e. variations over the continuous frequency block that a device uses for a cohesive transmission. Variations at this level are well known but current wireless systems restrict to basic equalization techniques to balance the received signal. In contrast, this work shows that more fine grained adaptation to these differences can accomplish throughput and connection range gains. Second, multi-frequency band enabled devices that access widely differing frequency resources in the millimeter wave range as well as in the microwave range are analyzed. These devices that are expected to follow the IEEE 802.11ad specification experience intense propagation variations over their frequency resources. Thus, a part of this thesis revises, the theoretical specification of the IEEE 802.11ad standard and complements it by a measurement study of first generation millimeter wave devices. This study reveals deficiencies of first generation millimeter wave systems, whose improvement will pose new challenges to the protocol design of future generation systems. These challenges are than addressed by novel methods that leverage from frequency varying propagation characteristics. The first method, improves the beam training process of millimeter wave networks, that need highly directional, though electronically steered, transmissions to overcome increased free space attenuation. By leveraging from omni-directional signal propagation at the microwave bands, efficient direction interference is utilized to provide information to millimeter wave interfaces and replace brute force direction testing. Second, deafness effects at the millimeter wave band, which impact IEEE 802.11 channel access methods are addressed. As directional communication on these bands complicates sensing the medium to be busy or idle, inefficiencies and unfairness are implied. By using coordination message exchange on the legacyWi-Fi frequencies with omnidirectional communication properties, these effects are countered. The millimeter wave bands can thus unfold their full potential, being exclusively used for high speed data frame transmission.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ralf Steinmetz.- Secretario: Albert Banchs Roca.- Vocal: Kyle Jamieso

    Performance improvements in wireless CDMA communications utilizing adaptive antenna arrays

    Get PDF
    This dissertation studies applications of adaptive antenna arrays and space-time adaptive processing (STAP) in wireless code-division multiple-access (CDMA) communications. The work addresses three aspects of the CDMA communications problems: (I) near-far resistance, (2) reverse link, (3) forward link. In each case, adaptive arrays are applied and their performance is investigated. The near-far effect is a well known problem which affects the reverse link of CDMA communication systems. The near-far resistance of STAP is analyzed for two processing methods: maximal ratio combining and optimum combining. It. is shown that while maximal ratio combining is not near-far resistant, optimum combining is near-far resistant when the number of cochannel interferences is less than the system dimensionality. The near-far effect can be mitigated by accurate power control at the mobile station. With practical limitations, the received signal power at a base station from a power-controlled user is a random variable clue to power control error. The statistical model of signal-to-interference ratio at the antenna array output of a base station is presented, and the outage probability of the CDMA reverse link is analyzed while considering Rayleigh fading, voice activity and power control error. New analytical expressions are obtained and demonstrated by computer simulations. For the application of an adaptive antenna. array at the forward link, a receiver architecture is suggested for the mobile station that utilizes a small two-antenna array For interference suppression. Such a receiver works well only when the channel vector of the desired signal is known. The identifying spreading codes (as in IS-95A for example) are used to provide an adaptive channel vector estimate, and control the beam steering weight, hence improve the receiver performance. Numerical results are presented to illustrate the operation of the proposed receiver model and the improvement in performance and capacity

    Beamforming design and power control for spectrum sharing systems

    Get PDF
    In order to provide wireless services for the current demand of high data rate mobile applications, more spectrally efficient systems are needed. As a matter of fact, the current wireless systems are limited by a frequency splitting spectrum management which in one hand minimizes the multiuser interference but; on the other hand, it precludes the use of wider bandwidth signals. As a more aggressive frequency reuse is targeted (ideally, all transmitters might eventually share the same frequency band), the use of multiple antennas for interference reliving, jointly with a smart power allocation is compulsory. In addition, novel spectrum management regulatory policies are required for ensuring a peaceful coexistence between adjacent spectrum sharing networks and for promoting their development. The aim of this dissertation is provide a beamforming and power allocation design for these novel spectrum sharing systems which are meant to exponentially increase the spectral efficiency of the systems. A mathematical framework based on multicriteria optimization for analyzing the beamforming design is provided which serves as a fundamental tool for describing the state-of-the-art studies in multiantenna interference networks. Indeed, the achievable rates are described and several ways of computing the Pareto rate region of MISO interference channel (i.e. the communication model that represents the spectrum sharing network when the transmitters use multiple antennas) are studied. Nevertheless, as the system designer aims to work in a single efficient rate point, the sum-rate optimal beamforming design is studied. Curiously, it results that under some realistic assumptions on both the desired and interference power levels, the obtained beamformer is the reciprocal version of a known receiving one and it optimizes a notion of antenna directivity for multiuser communications. Neverthelss, it is important to remark that the higher transmit power is used, the more interference dominated is the medium, not only within the wireless network, but also to eventually adjacent networks that might suffer from inter-network interference. In order to cope with this problem, a spectrum licensing system is revisited, namely time-area-spectrum license. Under this spectrum management mechanism, a license holder is able to radiate signals under a certain portion of time, within a concrete area and in a given band. Moreover, the amount of signal strength within the area is constraint by a certain value. Since controlling the signal power levels in a given area is cumbersome, we propose to restrict the receive power as an estimation of the overall accumulated signal strength. Therefore, the optimal transmit beamformers and power allocations are studied. Concretely, the achievable rates are derived and an operational working point is envisaged. In addition, a suboptimal yet low computationally complex and decentralized beamforming design is presented and it shows a good performance in front of other decentralized designs

    Design and Optimization of Physical Waveform-Diverse and Spatially-Diverse Radar Emissions

    Get PDF
    With the advancement of arbitrary waveform generation techniques, new radar transmission modes can be designed via precise control of the waveform's time-domain signal structure. The finer degree of emission control for a waveform (or multiple waveforms via a digital array) presents an opportunity to reduce ambiguities in the estimation of parameters within the radar backscatter. While this freedom opens the door to new emission capabilities, one must still consider the practical attributes for radar waveform design. Constraints such as constant amplitude (to maintain sufficient power efficiency) and continuous phase (for spectral containment) are still considered prerequisites for high-powered radar waveforms. These criteria are also applicable to the design of multiple waveforms emitted from an antenna array in a multiple-input multiple-output (MIMO) mode. In this work, three spatially-diverse radar emission design methods are introduced that provide constant amplitude, spectrally-contained waveforms implemented via a digital array radar (DAR). The first design method, denoted as spatial modulation, designs the radar waveforms via a polyphase-coded frequency-modulated (PCFM) framework to steer the coherent mainbeam of the emission within a pulse. The second design method is an iterative scheme to generate waveforms that achieve a desired wideband and/or widebeam radar emission. However, a wideband and widebeam emission can place a portion of the emitted energy into what is known as the `invisible' space of the array, which is related to the storage of reactive power that can damage a radar transmitter. The proposed design method purposefully avoids this space and a quantity denoted as the Fractional Reactive Power (FRP) is defined to assess the quality of the result. The third design method produces simultaneous radar and communications beams in separate spatial directions while maintaining constant modulus by leveraging the orthogonal complement of the emitted directions. This orthogonal energy defines a trade-space between power efficiency gained from constraining waveforms to be constant amplitude and power efficiency lost by emitting energy in undesired directions. The design of FM waveforms via traditional gradient-based optimization methods is also considered. A waveform model is proposed that is a generalization of the PCFM implementation, denoted as coded-FM (CFM), which defines the phase of the waveform via a summation of weighted, predefined basis functions. Therefore, gradient-based methods can be used to minimize a given cost function with respect to a finite set of optimizable parameters. A generalized integrated sidelobe level (GISL) metric is used as the optimization cost function to minimize the correlation range sidelobes of the radar waveform. System specific waveform optimization is explored by incorporating the linear models of three different loopback configurations into the GISL metric to match the optimized waveforms to the particular systems

    Mathematical optimization and game theoretic techniques for multicell beamforming

    Get PDF
    The main challenge in mobile wireless communications is the incompatibility between limited wireless resources and increasing demand on wireless services. The employment of frequency reuse technique has effectively increased the capacity of the network and improved the efficiency of frequency utilization. However, with the emergence of smart phones and even more data hungry applications such as interactive multimedia, higher data rate is demanded by mobile users. On the other hand, the interference induced by spectrum sharing arrangement has severely degraded the quality of service for users and restricted further reduction of cell size and enhancement of frequency reuse factor. Beamforming technique has great potential to improve the network performance. With the employment of multiple antennas, a base station is capable of directionally transmitting signals to desired users through narrow beams rather than omnidirectional waves. This will result users suffer less interference from the signals transmitted to other co-channel users. In addition, with the combination of beamforming technique and appropriate power control schemes, the resources of the wireless networks can be used more efficiently. In this thesis, mathematical optimization and game theoretic techniques have been exploited for beamforming designs within the context of multicell wireless networks. Both the coordinated beamforming and the coalitional game theoretic based beamforming techniques have been proposed. Initially, coordinated multicell beamforming algorithms for mixed design criteria have been developed, in which some users are allowed to achieve target signal-to-interference- plus-noise ratios (SINRs) while the SINRs of rest of the users in all cells will be balanced to a maximum achievable SINR. An SINR balancing based coordinated multicell beamforming algorithm has then been proposed which is capable of balancing users in different cells to different SINR levels. Finally, a coalitional game based multicell beamforming has been considered, in which the proposed coalition formation algorithm can reach to stable coalition structures. The performances of all the proposed algorithms have been demonstrated using MATLAB based simulations

    Planck 2013 results. I. Overview of products and scientific results

    Get PDF
    Peer reviewe

    Novel feedback and signalling mechanisms for interference management and efficient modulation

    Get PDF
    In order to meet the ever-growing demand for mobile data, a number of different technologies have been adopted by the fourth generation standardization bodies. These include multiple access schemes such as spatial division multiple access (SDMA), and efficient modulation techniques such as orthogonal frequency division multiplexing (OFDM)-based modulation. The specific objectives of this theses are to develop an effective feedback method for interference management in smart antenna SDMA systems and to design an efficient OFDM-based modulation technique, where an additional dimension is added to the conventional two-dimensional modulation techniques such as quadrature amplitude modulation (QAM). In SDMA time division duplex (TDD) systems, where channel reciprocity is maintained, uplink (UL) channel sounding method is considered as one of the most promising feedback methods due to its bandwidth and delay efficiency. Conventional channel sounding (CCS) only conveys the channel state information (CSI) of each active user to the base station (BS). Due to the limitation in system performance because of co-channel interference (CCI) from adjacent cells in interference-limited scenarios, CSI is only a suboptimal metric for multiuser spatial multiplexing optimization. The first major contribution of this theses is a novel interference feedback method proposed to provide the BS with implicit knowledge about the interference level received by each mobile station (MS). More specifically, it is proposed to weight the conventional channel sounding pilots by the level of the experienced interference at the user’s side. Interference-weighted channel sounding (IWCS) acts as a spectrally efficient feedback technique that provides the BS with implicit knowledge about CCI experienced by each MS, and significantly improves the downlink (DL) sum capacity for both greedy and fair scheduling policies. For the sake of completeness, a novel procedure is developed to make the IWCS pilots usable for UL optimization. It is proposed to divide the optimization metric obtained from the IWCS pilots by the interference experienced at the BS’s antennas. The resultant new metric, the channel gain divided by the multiplication of DL and UL interference, provides link-protection awareness and is used to optimize both UL and DL. Using maximum capacity scheduling criterion, the link-protection aware metric results in a gain in the median system sum capacity of 26.7% and 12.5% in DL and UL respectively compared to the case when conventional channel sounding techniques are used. Moreover, heuristic algorithm has been proposed in order to facilitate a practical optimization and to reduce the computational complexity. The second major contribution of this theses is an innovative transmission approach, referred to as subcarrier-index modulation (SIM), which is proposed to be integrated with OFDM. The key idea of SIM is to employ the subcarrier-index to convey information to the receiver. Furthermore, a closed-form analytical bit error ratio (BER) of SIM OFDM in Rayleigh channel is derived. Simulation results show BER performance gain of 4 dB over 4-QAM OFDM for both coded and uncoded data without power saving policy. Alternatively, power saving policy maintains an average gain of 1 dB while only using half OFDM symbol transmit power

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore