7,526 research outputs found

    IMPLEMENTASI PENGENDALIAN KECEPATAN BRUSHLESS MOTOR DC MENGGUNAKAN LOGIKA FUZZY BERBASIS GUI LABVIEW 2014

    Get PDF
    Abstrak Brushless Motor Direct Current (Brushless DC) membutuhkan suatu pengendali untuk menggerakkan dan mengendalikan putaran Brushless Motor DC. Juga penggerak daya atau Driver Brushless Motor DC agar motor dapat dikendalikan secara akurat. Tujuan dari penelitian ini adalah merancang dan mengimplementasikan logika fuzzy untuk pengendali kecepatan Brushless Motor DC. Rancang bangun sistem menggunakan perangkat akuisisi data NI Elvis II+ dan perangkat lunak NI LabView 2014 sebagai unit pengendali. Selain itu, tacho digunakan sebagai tranduser untuk mengukur kecepatan motor. Brushless Motor DC digunakan sebagai perangkat aktuasi untuk memanipulasi keadaan sistem. Sistem logika fuzzy digunakan untuk mengatur kecepatan Brushless Motor DC dan menjaga kestabilan putarannya. Pada perancangan pengendali dengan 5 fungsi keanggotaan diperoleh nilai masukan error dan derror -5 sampai dengan 5 dan nilai keluaran -7,5 sampai dengan 7,5. Menggunakan 2 representasi yaitu segitiga dan trapesium dalam penyusunannya. Digunakan 25 aturan basis yang berfokus pada titik positif sesuai dengan kebutuhan plant. Jenis defuzzifikasi yang digunakan adalah COA/centroid. Implementasi pengendali pada sistem fisik diketahui bahwa logika fuzzy yang dirancang memiliki kemampuan menstabilkan sistem dan ketahanan terhadap beban yang baik, berhasil mencapai nilai setpoint dan mengurangi Ess (Error Steady State) pada respon sistem riil menjadi 2,50% (tanpa beban) dari kondisi semula tanpa logika yaitu 224%, serta memiliki respon dengan tr (rise time) pada logika fuzzy 5 fungsi keanggotaan sebesar 0,588 detik dan Maximum Overshoot (MO) sebesar 13,8%. Kata Kunci : Brushless Motor DC, Logika Fuzzy, LabVIEW 2014 Abstract Brushless Direct Current (Brushless DC) motor requires a controller to drive and control the Brushless Motor DC rotation. Also a power drive or Brushless Motor DC Driver for the motor can be controlled accurately. The purpose of this research is to design and implement fuzzy controller for speed control of Brushless Motor DC. System design using NI Elvis II + data acquisition device and NI LabView 2014 software as control unit. In addition, the tacho is used as a transducer to measure motor speed. Brushless Motor DC is used as an actuation device to manipulate the state of the system. The fuzzy controller system is used to adjust the Brushless Motor DC speed and maintain the stability of the rotation. Designing the controller with 5 membership functions obtained the value of input error and derror -5 to 5 and the output value -7,5 up to 7.5. Using 2 representations of triangle and trapezium in the preparation. 25 base rules are used that focus on positive points in accordance with the needs of the plant. The defuzzification type used is COA / centroid. Implementation of the controller on the physical system is known that the designed fuzzy controller has the ability to stabilize the system and good load resistance, managed to reach the setpoint value and reduce the Ess (Error Steady State) in the real system response to 2.50% (without load) from the original condition without controller that is 224%, and has a response with tr (rise time) on the fuzzy controller 5 membership function of 0.588 seconds and Maximum Overshoot (MO) of 13.8%. Keywords : Brushless Motor DC, Fuzzy Controller, LabVIEW 201

    A Study of the Degradation of Electronic Speed Controllers for Brushless DC Motors

    Get PDF
    Brushless DC motors are frequently used in electric aircraft and other direct drive applications. As these motors are notactually direct current machines but synchronous alternating current machines; they are electronically commutated by a power inverter. The power inverter for brushless DC motors typically used in small scale UAVs is a semiconductor base delectronic commutator that is external to the motor and is referred to as an electronic speed control (ESC). This paper examines the performance changes of a UAV electric propulsion system resulting from ESC degradation. ESC performance is evaluated in simulation and on a new developed test bed featuring propulsion components from a reference UAV. An increase in the rise fall times of the switched voltages is expected to cause timing issues at high motor speeds. This study paves the way for further development of diagnostic and prognostic methods for inverter circuits which are part of the overall electric UAV system

    Implementation,Simulation of Four Switch Converter Permanent Magnet Brushless DC Motor Drive for Industrial Applications

    Get PDF
    This Research paper proposes a low cost four switch three phase inverter (FSTPI) fed brushless DC (BLDC) motor drive for Active power factor correction for residential applicationswith out environmental issues. This proposed system is simplified the topological structure of the conventional six switch three phase inverter (SSTPI) and includes an active power factor correction in front end rectifier which results in sinusoidal input current and it closed to unity power factor. In this project a new structure of four switch three phase inverter with reduced number of switches for system is introduced. This system consists of single phase rectifier and four switch three phase inverter. This proposed inverter fed BLDC motor used in Sensorless control schemes. To improve sensorless control performance, six commutation modes based on direct current controlled PWM scheme is implemented to produced the desire Torque-Speed characteristics. This four switch three phase inverter is achieved by the reduction of switches, low cost control and saving of hall sensor. The design and implementation of low cost four switch inverter for Brushless motor drive with active power factor correction  have been conducted successfully and valediction  of the proposed sensorless control for four switch three phase inverter fed BLDC motor drive is developed and analysed using both  MATLAB/SIMULINK and hardware results  are verified out successfully

    IMPLEMENTASI PENGENDALIAN KECEPATAN BRUSHLESS MOTOR DC MENGGUNAKAN LOGIKA FUZZY BERBASIS GUI LABVIEW 2014

    Get PDF
    Abstrak Brushless Motor Direct Current (Brushless DC) membutuhkan suatu pengendali untuk menggerakkan dan mengendalikan putaran Brushless Motor DC. Juga penggerak daya atau Driver Brushless Motor DC agar motor dapat dikendalikan secara akurat. Tujuan dari penelitian ini adalah merancang dan mengimplementasikan logika fuzzy untuk pengendali kecepatan Brushless Motor DC. Rancang bangun sistem menggunakan perangkat akuisisi data NI Elvis II+ dan perangkat lunak NI LabView 2014 sebagai unit pengendali. Selain itu, tacho digunakan sebagai tranduser untuk mengukur kecepatan motor. Brushless Motor DC digunakan sebagai perangkat aktuasi untuk memanipulasi keadaan sistem. Sistem logika fuzzy digunakan untuk mengatur kecepatan Brushless Motor DC dan menjaga kestabilan putarannya. Pada perancangan pengendali dengan 5 fungsi keanggotaan diperoleh nilai masukan error dan derror -5 sampai dengan 5 dan nilai keluaran -7,5 sampai dengan 7,5. Menggunakan 2 representasi yaitu segitiga dan trapesium dalam penyusunannya. Digunakan 25 aturan basis yang berfokus pada titik positif sesuai dengan kebutuhan plant. Jenis defuzzifikasi yang digunakan adalah COA/centroid. Implementasi pengendali pada sistem fisik diketahui bahwa logika fuzzy yang dirancang memiliki kemampuan menstabilkan sistem dan ketahanan terhadap beban yang baik, berhasil mencapai nilai setpoint dan mengurangi Ess (Error Steady State) pada respon sistem riil menjadi 2,50% (tanpa beban) dari kondisi semula tanpa logika yaitu 224%, serta memiliki respon dengan tr (rise time) pada logika fuzzy 5 fungsi keanggotaan sebesar 0,588 detik dan Maximum Overshoot (MO) sebesar 13,8%. Kata Kunci : Brushless Motor DC, Logika Fuzzy, LabVIEW 2014 Abstract Brushless Direct Current (Brushless DC) motor requires a controller to drive and control the Brushless Motor DC rotation. Also a power drive or Brushless Motor DC Driver for the motor can be controlled accurately. The purpose of this research is to design and implement fuzzy controller for speed control of Brushless Motor DC. System design using NI Elvis II + data acquisition device and NI LabView 2014 software as control unit. In addition, the tacho is used as a transducer to measure motor speed. Brushless Motor DC is used as an actuation device to manipulate the state of the system. The fuzzy controller system is used to adjust the Brushless Motor DC speed and maintain the stability of the rotation. Designing the controller with 5 membership functions obtained the value of input error and derror -5 to 5 and the output value -7,5 up to 7.5. Using 2 representations of triangle and trapezium in the preparation. 25 base rules are used that focus on positive points in accordance with the needs of the plant. The defuzzification type used is COA / centroid. Implementation of the controller on the physical system is known that the designed fuzzy controller has the ability to stabilize the system and good load resistance, managed to reach the setpoint value and reduce the Ess (Error Steady State) in the real system response to 2.50% (without load) from the original condition without controller that is 224%, and has a response with tr (rise time) on the fuzzy controller 5 membership function of 0.588 seconds and Maximum Overshoot (MO) of 13.8%. Keywords : Brushless Motor DC, Fuzzy Controller, LabVIEW 201

    Optimization of Fuzzy Logic Controllers by Particle Swarm Optimization to Increase the Lifetime in Power Electronic Stages

    Get PDF
    In recent years, brushless direct current motor (BLDCM) applications have been increased due to their advantages as low size, mechanical torque, high-speed range, to mention some. The BLDCM control is required to operate at high frequency, high temperature, large voltage, and quick changes of current; as a result of this kind of operation, the power drive lifetime is affected. The power drives commonly utilized insulated gate bipolar transistors (IGBTs) and metal oxide semiconductor field effect transistors (MOSFETs), which present power losses, on-state losses, and switching losses caused by temperature oscillations. Hence, the power losses are related to the command signals generated by the controller. In this sense, the BLDC motor drive controller design, frequently, does not take into account the power losses and the temperature oscillations, which cause the IGBT lifetime decrease or premature fail. In this chapter, a brushless DC motor drive is designed based on a fuzzy controller tuned with the particle swarm optimization algorithm, where the temperature oscillations and speed set points are considered in order to increase IGBT module lifetime. The validation of the proposed fuzzy-PSO controller is carried out by the co-simulation between LabVIEW™ and Multisim™ and finally analysis and conclusion of the work

    Control of Electro-Mechanical Actuator for Aerospace Applications

    Get PDF
    The paper mainly focuses two major areas of electromechanical actuator system composed of power screw, spur gear train and Brushless DC Servo Motor. First it describes control of electromechanical actuator system with three level of current controller which is composed of power amplifier, DSP module and interfacing circuitry. The non-linear model of the three level controllers developed in SIMULINK environment is presented. A second point which was included in this study is the comparison of two control strategies i.e. three level controller and PWM current controller. The main outcomes of the study is that three level controller is simple in construction and much more stable. This is much suitable for higher reduction systems, short missions and low power density actuators; however it has few limitation that make it unsuitable for applications such as high power density, long missions and direct drive system

    Harjattoman tasavirtamoottorin arviointi opto-mekaanisessa paikkasäätösovelluksessa

    Get PDF
    This thesis evaluates the applicability of a micro-sized brushless direct current (DC) mo- tor in an opto-mechanical positioning application. Brushless DC motors are electronically commutated motors that use permanent magnets to produce the airgap magnetic field. The motor is powered through an inverter or switching power supply which produces an AC electric current to drive each phase of the motor. Optimal current waveforms are determined by the motor controller based on the desired torque, speed or position requirements. The benefits of a brushless motor over conventional brushed DC motors are a high power to weight ratio, low noise and a long operating life. The purpose of this thesis is to find out the performance potential of such motors and determine methods to achieve it. Firstly, a motor model and an exact motor classification is presented. A literature review is made to discuss state of the art control methods and hardware configurations for dynamic position control. Based on the literature review, a control scheme with field-oriented control based torque control and cascaded PI controlled speed and position loops was selected for further evaluation. Experimental positioning tests were executed for two motors with different power transmission setups. Tests were performed with both, a hardware and software implemented, motor controllers. Results show promising performance. It was shown that the required acceleration is feasible with both, geared and direct drive, transmissions. Field-oriented control was shown as a well performing method to control torque but special caution was needed to implement a reliable position sensing solution in a small size as the control algorithm is intolerant for inaccurate and noisy position data. The conventional PI based position controller was effective in cases with no feedback related harmonics or motor related torque ripple but was not capable in handling ripple caused by a non-ideal system. Quality variances were seen between motors which were originated from mechanical defects and non-idealities in the stator structure. Further research is needed to achieve a better settling performance through filtering undesired feedback harmonics, better tuning and thus minimizing undesired vibrations.Tämän diplomityön tarkoituksena on arvioida pienikokoisen harjattoman tasavirtamoottorin soveltuvuutta opto-mekaaniseen paikkasäätösovellukseen. Harjattomat tasavirtamoottorit ovat elektronisesti ohjattuja moottoreita, joissa ilmavälin magneettivuo luodaan kestomagneeteilla. Moottorille syötetään virtaa taajuusmuuttajalta, joka muodostaa halutunlaisen vaihtovirran jokaiselle moottorin vaiheelle. Syötettävää virtaa ohjataan moottorinohjaimelta määritettyjen vääntö-, nopeus- ja paikkavaatimusten perusteella. Harjattoman DC-moottorin edut verrattuna perinteiseen harjalliseen DC-moottoriin ovat hyvä teho-painosuhde, hiljainen käyntiääni ja pitkä käyttöikä. Diplomityön tavoitteena on kartoittaa kyseisen moottorityypin suorituskyky paikkasäädössä ja tutkia keinoja saavuttaa haluttu taso. Alan tutkimuksessa ja kirjallisuudessa tunnettuja suorituskykyisiä säätömenetelmiä ja laite- sekä komponenttikokoonpanoja on koostettu kirjallisuuskatsauksessa. Tämän perusteella kokeellisiin testeihin valittiin säätöarkkitehtuuri vektorisäätöön perustuvalla virransäädöllä sekä PI-pohjaisilla nopeus- ja paikkasäätimillä. Kokeellisilla paikoitustesteillä arvioitiin kahden moottorin suorituskykyä erilaisilla voimansiirtovaihtoehdoilla. Testit suoritettiin sekä ohjelmistopohjaisella että sovelluskohtaiseen mikropiiriin toteutetulla laitepohjaisella säätimellä. Tulokset osoittavat että vaaditun kiihtyvyyden saavuttaminen on mahdollista sekä vaihteellisella että suoravetoisella voimansiirrolla. Vektorisäätö osoittautui suorituskykyiseksi virransäätömenetelmäksi, mutta moottorin asentomittauksen luotettava toteutus vaati erityishuomiota, sillä vektorisäätöalgoritmi on herkkä paikkadatan tarkkuudelle. PI-säätimillä toteutettu paikkasäätö osoittautui toimivaksi, mutta herkäksi moottorin epäideaalisuuksille sekä häiriöille takaisinkytkennässä. Moottoreiden välillä havaittiin laatueroja mekaanisissa toleransseissa ja staattorin rakenteessa. Lopullisen asettumisajan saavuttaminen vaatii lisätutkimusta. Erityishuomiota on kiinnitettävä harmonisten komponenttien suodattamiseen sekä systeemin säätöön, jotta ei-toivotut värinät saadaan minimoitua

    Optimal Sensorless Four Switch Direct Power Control of BLDC Motor

    Get PDF
    Brushless DC (BLDC) motors are used in a wide range of applications due to their high efficiency and high power density. In this paper, sensorless four-switch direct power control (DPC) method with the sector to sector commutations ripple minimization for BLDC motor control is proposed. The main features of the proposed DPC method are: (1) fast dynamic response (2) easy implementation (3) use of power feedback for motor control that is much easy to implement (4) eliminating the torque dips during sector-to sector commutations. For controlling the motor speed, a position sensorless method is used enhancing drive reliability. For reference speed tracking, a PI control is also designed and tuned based on imperialist competition algorithm (ICA) that reduces reference tracking error. The feasibility of the proposed control method is developed and analyzed by MATLAB/SIMULINK®. Simulation results prove high performance exhibited by the proposed DPC strategy

    Direct torque control of brushless DC drives with reduced torque ripple

    Get PDF
    The application of direct torque control (DTC) to brushless ac drives has been investigated extensively. This paper describes its application to brushless dc drives, and highlights the essential differences in its implementation, as regards torque estimation and the representation of the inverter voltage space vectors. Simulated and experimental results are presented, and it is shown that, compared with conventional current control, DTC results in reduced torque ripple and a faster dynamic response

    Design and prototyping methods for brushless motors and motor control

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010."June 2010." Cataloged from PDF version of thesis.Includes bibliographical references (p. 109).In this report, simple, low-cost design and prototyping methods for custom brushless permanent magnet synchronous motors are explored. Three case-study motors are used to develop, illustrate and validate the methods. Two 500W hub motors are implemented in a direct-drive electric scooter. The third case study, a 10kW axial flux motor, is used to demonstrate the flexibility of the design methods. A variety of ways to predict the motor constant, which relates torque to current and speed to voltage, are presented. The predictions range from first-order DC estimates to full dynamic simulations, yielding increasingly accurate results. Ways to predict winding resistance, as well as other sources of loss in motors, are discussed in the context of the motor's overall power rating. Rapid prototyping methods for brushless motors prove to be useful in the fabrication of the case study motors. Simple no-load evaluation techniques confirm the predicted motor constants without large, expensive test equipment. Methods for brushless motor controller design and prototyping are also presented. The case study, a two channel, 1kW per channel brushless motor controller, is fully developed and used to illustrate these methods. The electrical requirements of the controller (voltage, current, frequency) influence the selection of components, such as power transistors and bus capacitors. Mechanical requirements, such as overall dimensions, heat transfer, and vibration tolerance, also play a large role in the design. With full-system prototyping in mind, the controller integrates wireless data acquisition for debugging. Field-oriented AC control is implemented on low-cost hardware using a novel modification of the standard synchronous current regulator. The controller performance is evaluated under load on two case study systems: On the direct-drive electric scooter, it simultaneously and independently controls the two motors. On a high-performance remote-control car, a more extreme operating point is tested with one motor.by Shane W. Colton.S.M
    corecore