10,573 research outputs found

    On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series Data

    Full text link
    With the coming data deluge from synoptic surveys, there is a growing need for frameworks that can quickly and automatically produce calibrated classification probabilities for newly-observed variables based on a small number of time-series measurements. In this paper, we introduce a methodology for variable-star classification, drawing from modern machine-learning techniques. We describe how to homogenize the information gleaned from light curves by selection and computation of real-numbered metrics ("feature"), detail methods to robustly estimate periodic light-curve features, introduce tree-ensemble methods for accurate variable star classification, and show how to rigorously evaluate the classification results using cross validation. On a 25-class data set of 1542 well-studied variable stars, we achieve a 22.8% overall classification error using the random forest classifier; this represents a 24% improvement over the best previous classifier on these data. This methodology is effective for identifying samples of specific science classes: for pulsational variables used in Milky Way tomography we obtain a discovery efficiency of 98.2% and for eclipsing systems we find an efficiency of 99.1%, both at 95% purity. We show that the random forest (RF) classifier is superior to other machine-learned methods in terms of accuracy, speed, and relative immunity to features with no useful class information; the RF classifier can also be used to estimate the importance of each feature in classification. Additionally, we present the first astronomical use of hierarchical classification methods to incorporate a known class taxonomy in the classifier, which further reduces the catastrophic error rate to 7.8%. Excluding low-amplitude sources, our overall error rate improves to 14%, with a catastrophic error rate of 3.5%.Comment: 23 pages, 9 figure

    Inspection System And Method For Bond Detection And Validation Of Surface Mount Devices Using Sensor Fusion And Active Perception

    Get PDF
    A hybrid surface mount component inspection system which includes both vision and infrared inspection techniques to determine the presence of surface mount components on a printed wiring board, and the quality of solder joints of surface mount components on printed wiring boards by using data level sensor fusion to combine data from two infrared sensors to obtain emissivity independent thermal signatures of solder joints, and using feature level sensor fusion with active perception to assemble and process inspection information from any number of sensors to determine characteristic feature sets of different defect classes to classify solder defects.Georgia Tech Research Corporatio

    Development of techniques to enhance man/machine communication

    Get PDF
    A four-state random stimulus generator, considered to function as an ESP teaching machine was used to investigate an approach to facilitating interactions between man and machines. A subject tries to guess in which of four states the machine is. The machine offers the user feedback and reinforcement as to the correctness of his choice. Using this machine, 148 volunteer subjects were screened under various protocols. Several whose learning slope and/or mean score departed significantly from chance expectation were identified. Direct physiological evidence of perception of remote stimuli not presented to any known sense of the percipient using electroencephalographic (EEG) output when a light was flashed in a distant room was also studied

    Adaptive Tesselation CMAC

    Full text link
    An ndaptive tessellation variant of the CMAC architecture is introduced. Adaptive tessellation is an error-based scheme for distributing input representations. Simulations show that the new network outperforms the original CMAC at a vnriety of learning tasks, including learning the inverse kinematics of a two-link arm.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100); National Science Foundation (IRI-90-00530); Boston University Presidential Graduate Fellowshi

    Linking Attention to Learning, Expectation, Competition, and Consciousness

    Full text link
    The concept of attention has been used in many senses, often without clarifying how or why attention works as it does. Attention, like consciousness, is often described in a disembodied way. The present article summarizes neural models and supportive data and how attention is linked to processes of learning, expectation, competition, and consciousness. A key them is that attention modulates cortical self-organization and stability. Perceptual and cognitive neocortex is organized into six main cell layers, with characteristic sub-lamina. Attention is part of unified design of bottom-up, horizontal, and top-down interactions among indentified cells in laminar cortical circuits. Neural models clarify how attention may be allocated during processes of visual perception, learning and search; auditory streaming and speech perception; movement target selection during sensory-motor control; mental imagery and fantasy; and hallucination during mental disorders, among other processes.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Automated image classification via unsupervised feature learning by K-means

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Research on image classification has grown rapidly in the field of machine learning. Many methods have already been implemented for image classification. Among all these methods, best results have been reported by neural network-based techniques. One of the most important steps in automated image classification is feature extraction. Feature extraction includes two parts: feature construction and feature selection. Many methods for feature extraction exist, but the best ones are related to deep-learning approaches such as network-in-network or deep convolutional network algorithms. Deep learning tries to focus on the level of abstraction and find higher levels of abstraction from the previous level by having multiple layers of hidden layers. The two main problems with using deep-learning approaches are the speed and the number of parameters that should be configured. Small changes or poor selection of parameters can alter the results completely or even make them worse. Tuning these parameters is usually impossible for normal users who do not have super computers because one should run the algorithm and try to tune the parameters according to the results obtained. Thus, this process can be very time consuming. This thesis attempts to address the speed and configuration issues found with traditional deep-network approaches. Some of the traditional methods of unsupervised learning are used to build an automated image-classification approach that takes less time both to configure and to run
    • …
    corecore