2,385 research outputs found

    Diffraction of Bloch Wave Packets for Maxwell's Equations

    Get PDF
    We study, for times of order 1/h, solutions of Maxwell's equations in an O(h^2) modulation of an h-periodic medium. The solutions are of slowly varying amplitude type built on Bloch plane waves with wavelength of order h. We construct accurate approximate solutions of three scale WKB type. The leading profile is both transported at the group velocity and dispersed by a Schr\"odinger equation given by the quadratic approximation of the Bloch dispersion relation. A weak ray average hypothesis guarantees stability. Compared to earlier work on scalar wave equations, the generator is no longer elliptic. Coercivity holds only on the complement of an infinite dimensional kernel. The system structure requires many innovations

    Nonlinear stability of periodic traveling wave solutions of systems of viscous conservation laws in the generic case

    Get PDF
    Extending previous results of Oh--Zumbrun and Johnson--Zumbrun, we show that spectral stability implies linearized and nonlinear stability of spatially periodic traveling-wave solutions of viscous systems of conservation laws for systems of generic type, removing a restrictive assumption that wave speed be constant to first order along the manifold of nearby periodic solutions.Comment: Fixed minor typo

    Whitham Averaged Equations and Modulational Stability of Periodic Traveling Waves of a Hyperbolic-Parabolic Balance Law

    Get PDF
    In this note, we report on recent findings concerning the spectral and nonlinear stability of periodic traveling wave solutions of hyperbolic-parabolic systems of balance laws, as applied to the St. Venant equations of shallow water flow down an incline. We begin by introducing a natural set of spectral stability assumptions, motivated by considerations from the Whitham averaged equations, and outline the recent proof yielding nonlinear stability under these conditions. We then turn to an analytical and numerical investigation of the verification of these spectral stability assumptions. While spectral instability is shown analytically to hold in both the Hopf and homoclinic limits, our numerical studies indicates spectrally stable periodic solutions of intermediate period. A mechanism for this moderate-amplitude stabilization is proposed in terms of numerically observed "metastability" of the the limiting homoclinic orbits.Comment: 27 pages, 5 figures. Minor changes throughou

    Dispersive homogenized models and coefficient formulas for waves in general periodic media

    Get PDF
    We analyze a homogenization limit for the linear wave equation of second order. The spatial operator is assumed to be of divergence form with an oscillatory coefficient matrix aΔa^\varepsilon that is periodic with characteristic length scale Δ\varepsilon; no spatial symmetry properties are imposed. Classical homogenization theory allows to describe solutions uΔu^\varepsilon well by a non-dispersive wave equation on fixed time intervals (0,T)(0,T). Instead, when larger time intervals are considered, dispersive effects are observed. In this contribution we present a well-posed weakly dispersive equation with homogeneous coefficients such that its solutions wΔw^\varepsilon describe uΔu^\varepsilon well on time intervals (0,TΔ−2)(0,T\varepsilon^{-2}). More precisely, we provide a norm and uniform error estimates of the form ∄uΔ(t)−wΔ(t)∄≀CΔ\| u^\varepsilon(t) - w^\varepsilon(t) \| \le C\varepsilon for t∈(0,TΔ−2)t\in (0,T\varepsilon^{-2}). They are accompanied by computable formulas for all coefficients in the effective models. We additionally provide an Δ\varepsilon-independent equation of third order that describes dispersion along rays and we present numerical examples.Comment: 28 pages, 7 figure

    Linear Asymptotic Stability and Modulation Behavior near Periodic Waves of the Korteweg-de Vries Equation

    Full text link
    We provide a detailed study of the dynamics obtained by linearizing the Korteweg-de Vries equation about one of its periodic traveling waves, a cnoidal wave. In a suitable sense, linearly analogous to space-modulated stability, we prove global-in-time bounded stability in any Sobolev space, and asymptotic stability of dispersive type. Furthermore, we provide both a leading-order description of the dynamics in terms of slow modulation of local parameters and asymptotic modulation systems and effective initial data for the evolution of those parameters. This requires a global-in-time study of the dynamics generated by a non normal operator with non constant coefficients. On the road we also prove estimates on oscillatory integrals particularly suitable to derive large-time asymptotic systems that could be of some general interest
    • 

    corecore