649 research outputs found

    A Mechanistic Force Model for Simulating Haptics of Hand-Held Bone Burring Operations

    Get PDF
    The research presented in the thesis is concentrated on developing a mechanistic model to predict the forces experienced during bone burring with application to haptic feedback for virtual reality surgical simulations. This model can be used in haptic devices to provide haptic feedback for virtual reality (VR) surgical simulations. The model is developed based on the understanding of the force profile recorded in the experiments. To determine the force produced under various cutting orientations, experiments are conducted using a surgical burr on a synthetic bone. The total force experienced in bone burring can be understood as a combination of resistive force and vibrational force. The resistive force is calculated using the concept of the specific cutting energy of the bone material. The specific cutting energy (Us) is a concept adopted from the mechanics of grinding. Data from the experiments is used to calibrate the specific cutting energy of the material. The vibrational force is developed as an empirical component of the coupled model. Comparisons between the experimentally measured force data and the force profile predicted by the model show a similar trend. Results confirm that the proposed model is capable of effectively predicting the haptics in bone burring, specifically with the abrasive type of burr

    To “Sketch-a-Scratch”

    Get PDF
    A surface can be harsh and raspy, or smooth and silky, and everything in between. We are used to sense these features with our fingertips as well as with our eyes and ears: the exploration of a surface is a multisensory experience. Tools, too, are often employed in the interaction with surfaces, since they augment our manipulation capabilities. “Sketch-a-Scratch” is a tool for the multisensory exploration and sketching of surface textures. The user’s actions drive a physical sound model of real materials’ response to interactions such as scraping, rubbing or rolling. Moreover, different input signals can be converted into 2D visual surface profiles, thus enabling to experience them visually, aurally and haptically

    Modern Applications of Electrostatics and Dielectrics

    Get PDF
    Electrostatics and dielectric materials have important applications in modern society. As such, they require improved characteristics. More and more equipment needs to operate at high frequency, high voltage, high temperature, and other harsh conditions. This book presents an overview of modern applications of electrostatics and dielectrics as well as research progress in the field

    HapticLever: Kinematic Force Feedback using a 3D Pantograph

    Full text link
    HapticLever is a new kinematic approach for VR haptics which uses a 3D pantograph to stiffly render large-scale surfaces using small-scale proxies. The HapticLever approach does not consume power to render forces, but rather puts a mechanical constraint on the end effector using a small-scale proxy surface. The HapticLever approach provides stiff force feedback when the user interacts with a static virtual surface, but allows the user to move their arm freely when moving through free virtual space. We present the problem space, the related work, and the HapticLever design approach.Comment: UIST 2022 Poste
    • …
    corecore