190,149 research outputs found

    AMP: A Science-driven Web-based Application for the TeraGrid

    Full text link
    The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.Comment: 7 pages, 2 figures, in Proceedings of the 5th Grid Computing Environments Worksho

    Launch of the Ethiopian Digital AgroClimate Advisory Platform (EDACaP) Progress Report on EDACaP Development and Hosting

    Get PDF
    This brief outlines progress achieved with the establishment of the Ethiopian Digital AgroClimate Advisory Platform (EDACaP) under the CCAFS project P263 (Regional and national engagement, synthesis and strategic research) with support from P1605 (Capacitating African Stakeholders with Climate Advisories and Insurance Development). EDACaP aims to build farmers' resilience through agro-climate advisories that digitally integrate climate, soil, crop and agronomic data and are delivered through SMS, IVRS and radio to development agents and farmers in local languages. It builds on a partnership between the Ethiopian Institute of Agricultural Research (EIAR), the Ministry of Agriculture (MoA), the National Meteorological Agency, CIAT, ILRI, CIMMYT with additional support from ICRISAT, IRI, and University of Florida

    The Theoretical Astrophysical Observatory: Cloud-Based Mock Galaxy Catalogues

    Full text link
    We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires an expert knowledge of galaxy modelling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalogue suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light-cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO's features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.Comment: 17 pages, 11 figures, 2 tables; accepted for publication in ApJS. The Theoretical Astrophysical Observatory (TAO) is now open to the public at https://tao.asvo.org.au/. New simulations, models and tools will be added as they become available. Contact [email protected] if you have data you would like to make public through TAO. Feedback and suggestions are very welcom
    • …
    corecore