2,308 research outputs found

    Performance analysis of switching systems

    Get PDF
    Performance analysis is an important aspect in the design of dynamic (control) systems. Without a proper analysis of the behavior of a system, it is impossible to guarantee that a certain design satisfies the system’s requirements. For linear time-invariant systems, accurate performance analyses are relatively easy to make and as a result also many linear (controller) design methods have appeared in the past. For nonlinear systems, on the other hand, such accurate performance analyses and controller design methods are in general not available. A main reason hereof is that nonlinear systems, as opposed to linear time-invariant systems, can have multiple steady-state solutions. Due to the coexistence of multiple steady-state solutions, it is much harder to define an accurate performance index. Some nonlinear systems, i.e. the so-called convergent nonlinear systems, however, are characterized by a unique steady-state solution. This steady-state solution may depend on the system’s input signals (e.g. reference signals), but is independent of the initial conditions of the system. In the past, the notion of convergent systems has already been proven to be very useful in the performance analysis of nonlinear systems with inputs. In this thesis, new results in the field of performance analysis of nonlinear systems with inputs are presented, based on the notion of convergent systems. One part of the thesis is concerned with the question "how to analyse the performance for a convergent system?" Since the behavior of a convergent system is independent of the initial conditions (after some transient time), simulation can be used to find the unique steady-state solution that corresponds to a certain input signal, but this can be very time-consuming. In this thesis, a computationally more efficient approach is presented to estimate the steady-state performance of harmonically forced Lur’e systems, in terms of nonlinear frequency response functions (nFRFs). This approach is based on the method of harmonic linearization. It provides both a linear approximation of the nFRF and an upper bound on the error between this linear approximation and the true nFRF. It is shown in several examples that the approximation of the nFRF is accurate, and that it provides more detailed information on the considered system than the often used ‘L2 gain’ performance index. An additional observation that is made, is that the method of harmonic linearization can sometimes be ‘misleading’ for Lur’e systems with a saturation-like nonlinearity: for the case that the harmonic balance equation has a unique solution, it is shown that the corresponding nonlinear system can have multiple distinct steady-state solutions. Another part of the thesis is concerned with the question "under what conditions is a system with inputs guaranteed to be convergent?" In particular two types of systems were investigated: switched linear systems and Lur’e systems with a saturation nonlinearity and marginally stable linear part. For the switched linear systems, it is assumed that the dynamics of all the separate linear modes are given. For this setting, it was investigated if it is possible to find a switching rule (which defines when to switch between the available modes) such that the closed-loop system is convergent. Both a state-based, an observer-based, and a time-based switching rule are presented that guarantee a convergent system, assuming some conditions on the linear dynamics are met. The second type of systems that are discussed, are Lur’e systems with a saturation nonlinearity and marginally stable linear part. For this type of systems, the goal was to find sufficient conditions under which the closed-loop system is convergent. Because of the marginally stable linear part, however, a quadratically convergent system cannot be obtained. Instead, sufficient conditions are discussed that guarantee uniform convergency of the system. The obtained theory is shown to be also applicable to a class of anti-windup systems with a marginally stable plant. For this class of systems, the results of the convergency-based performance analysis are compared with the analysis results of existing anti-windup methods. It is shown that the convergency-based performance analysis can in some cases provide more detailed information on the steady-state behavior of the system. The results of uniform convergency for anti-windup systems are shown to be also applicable in the field of production and inventory control of discrete-event manufacturing systems. Since a manufacturing machine has a certain production capacity and cannot produce at a negative rate, it can be seen as an integrator plant (input: production rate, output: amount of finished products) preceded by a saturation function. For this marginally stable plant, a controller was constructed in such a way that the closed-loop system is uniformly convergent. The controller was also implemented in the discrete-event domain and the results from discrete-event simulations were compared with those of continuous-time simulations. Similarly, the controller was also applied for the production and inventory control of a line of four manufacturing machines. For both the single machine and the line of four machines, the resulting controlled discrete-event systems are shown to have the desired tracking properties. Besides these theoretical and numerical results, also experimental results are presented in this thesis. By means of an electromechanical construction, several experimental results were obtained, and used to validate the theoretical results for both the switched linear systems and the anti-windup systems

    Neural MRAC based on modified state observer

    Get PDF
    A new model reference adaptive control design method with guaranteed transient performance using neural networks is proposed in this thesis. With this method, stable tracking of a desired trajectory is realized for nonlinear system with uncertainty, and modified state observer structure is designed to enable desired transient performance with large adaptive gain and at the same time avoid high frequency oscillation. The neural network adaption rule is derived using Lyapunov theory, which guarantees stability of error dynamics and boundedness of neural network weights, and a soft switching sliding mode modification is added in order to adjust tracking error. The proposed method is tested by different theoretical application problems simulations, and also Caterpillar Electro-Hydraulic Test Bench experiments. Satisfying results show the potential of this approach --Abstract, page iv

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Spline based controller for nonlinear systems

    Get PDF
    The objective of this thesis is to apply spline theory to implement controllers for nonlinear systems. Two different systems, forced Duffing oscillators and power systems, are investigated. The spline method is used to mimic the controller which drives a state of the Duffing system toward a desired path. The spline-based nonlinear controller has piecewise polynomial segments with different order of polynomials on each segment. Controller efforts for different order of polynomial interpolants and power spectral densities of the controller signals are compared with the exact feedback linearizaton method.;The first objective for power systems is to design nonlinear excitation controllers for a multi-machine power system using Direct Feedback Linearization. The designed controllers, whose parameters are obtained, require the internal variables of the machines. These variables are verified by using a proposed internal variable identifying algorithm. The objective is to design nonlinear excitation controllers for power system stability enhancement. Spline techniques are used to approximate the nonlinear controllers obtained through feedback linearization by piecewise polynomials while enhancing the stability of the system

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Robust-Neural Observer Design for Discrete-Time Uncertain Non-Affine Nonlinear System

    Get PDF
    This paper proposed a new Nonlinear Discrete-Time Robust-Neural Observer (DTRNO) which capable to give estimation for the states of Discrete-Time Uncertain Non-affine Non-linear Systems in presence of external disturbances. The Neural network is a kind of discrete-time Multi Layered Perceptron (MLP) which Trained with an Extended Kalman-Filter (EKF) based algorithm, which this neural observer is robust in presence of external and internal uncertainties, using a parallel configuration.This work includes the stability proof of the estimation error on the basis of the Lyapunov approach, and for demonstrate observer performance an Uncertain Non-affine Nonlinear Systems have been simulated to formulations validate the theoretical. Simulation results confirm the proficiency of the DTRNO even at the different operating conditions and presence of parameters uncertainties.DOI:http://dx.doi.org/10.11591/ijece.v4i4.617

    Control of a DC motor using feedback linearization and gray wolf optimization algorithm

    Get PDF
    The aim of this study is to investigate nonlinear DC motor behavior and to control velocity as output variable. The linear model is designed, but as it is experimentally verified that it does not describe the system well enough it is replaced by the nonlinear one. System's model has been obtained taking into account Coulomb and viscous friction in the firmly nonlinear environment. In the frame of the paper the dynamical analysis of the nonlinear feedback linearizing control is carried out. Furthermore, a metaheuristic optimization algorithm is set up for finding the coefficient of the proportional-integral feedback linearizing controller. For this purpose Gray wolf optimization technique is used. Moreover, after the introduction of the control law, analysis of the pole placement and stability of the system is establish. Optimized nonlinear control signal has been applied to the real object with simulated white noise and step signal as disturbances. Finally, for several desired output signals, responses with and without disruption are compared to illustrate the approach proposed in the paper. Experimental results obtained on the given system are provided and they verify nonlinear control robustness
    corecore