9,133 research outputs found

    Inverse zero-sum problems II

    Full text link
    Let GG be an additive finite abelian group. A sequence over GG is called a minimal zero-sum sequence if the sum of its terms is zero and no proper subsequence has this property. Davenport's constant of GG is the maximum of the lengths of the minimal zero-sum sequences over GG. Its value is well-known for groups of rank two. We investigate the structure of minimal zero-sum sequences of maximal length for groups of rank two. Assuming a well-supported conjecture on this problem for groups of the form Cm⊕CmC_m \oplus C_m, we determine the structure of these sequences for groups of rank two. Combining our result and partial results on this conjecture, yields unconditional results for certain groups of rank two.Comment: new version contains results related to Davenport's constant only; other results will be described separatel

    On the structure of subsets of an orderable group with some small doubling properties

    Full text link
    The aim of this paper is to present a complete description of the structure of subsets S of an orderable group G satisfying |S^2| = 3|S|-2 and is non-abelian

    On the existence of zero-sum subsequences of distinct lengths

    Full text link
    In this paper, we obtain a characterization of short normal sequences over a finite Abelian p-group, thus answering positively a conjecture of Gao for a variety of such groups. Our main result is deduced from a theorem of Alon, Friedland and Kalai, originally proved so as to study the existence of regular subgraphs in almost regular graphs. In the special case of elementary p-groups, Gao's conjecture is solved using Alon's Combinatorial Nullstellensatz. To conclude, we show that, assuming every integer satisfies Property B, this conjecture holds in the case of finite Abelian groups of rank two.Comment: 10 pages, to appear in Rocky Mountain Journal of Mathematic

    Quantum algorithms for problems in number theory, algebraic geometry, and group theory

    Full text link
    Quantum computers can execute algorithms that sometimes dramatically outperform classical computation. Undoubtedly the best-known example of this is Shor's discovery of an efficient quantum algorithm for factoring integers, whereas the same problem appears to be intractable on classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article will review the current state of quantum algorithms, focusing on algorithms for problems with an algebraic flavor that achieve an apparent superpolynomial speedup over classical computation.Comment: 20 pages, lecture notes for 2010 Summer School on Diversities in Quantum Computation/Information at Kinki Universit
    • …
    corecore