2,540 research outputs found

    Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems

    Full text link
    The purpose of this paper is to study and design direct and indirect couplings for use in coherent feedback control of a class of linear quantum stochastic systems. A general physical model for a nominal linear quantum system coupled directly and indirectly to external systems is presented. Fundamental properties of stability, dissipation, passivity, and gain for this class of linear quantum models are presented and characterized using complex Lyapunov equations and linear matrix inequalities (LMIs). Coherent H∞H^\infty and LQG synthesis methods are extended to accommodate direct couplings using multistep optimization. Examples are given to illustrate the results.Comment: 33 pages, 7 figures; accepted for publication in IEEE Transactions on Automatic Control, October 201

    Selective linear or quadratic optomechanical coupling via measurement

    Get PDF
    The ability to engineer both linear and non-linear coupling with a mechanical resonator is an important goal for the preparation and investigation of macroscopic mechanical quantum behavior. In this work, a measurement based scheme is presented where linear or square mechanical displacement coupling can be achieved using the optomechanical interaction linearly proportional to the mechanical position. The resulting square displacement measurement strength is compared to that attainable in the dispersive case using the direct interaction to the mechanical displacement squared. An experimental protocol and parameter set are discussed for the generation and observation of non-Gaussian states of motion of the mechanical element.Comment: 7 pages, 2 figures, (accepted in Physical Review X

    Quantum Feedback Networks and Control: A Brief Survey

    Get PDF
    The purpose of this paper is to provide a brief review of some recent developments in quantum feedback networks and control. A quantum feedback network (QFN) is an interconnected system consisting of open quantum systems linked by free fields and/or direct physical couplings. Basic network constructs, including series connections as well as feedback loops, are discussed. The quantum feedback network theory provides a natural framework for analysis and design. Basic properties such as dissipation, stability, passivity and gain of open quantum systems are discussed. Control system design is also discussed, primarily in the context of open linear quantum stochastic systems. The issue of physical realizability is discussed, and explicit criteria for stability, positive real lemma, and bounded real lemma are presented. Finally for linear quantum systems, coherent H∞H^\infty and LQG control are described.Comment: 29 pages, 11 figures. A new reference has been adde
    • …
    corecore