281 research outputs found

    An improved marine predators algorithm tuned data-driven multiple-node hormone regulation neuroendocrine-PID controller for multi-input–multi-output gantry crane system

    Get PDF
    Conventionally, researchers have favored the model-based control scheme for controlling gantry crane systems. However, this method necessitates a substantial investment of time and resources in order to develop an accurate mathematical model of the complex crane system. Recognizing this challenge, the current paper introduces a novel data-driven control scheme that relies exclusively on input and output data. Undertaking a couple of modifications to the conventional marine predators algorithm (MPA), random average marine predators algorithm (RAMPA) with tunable adaptive coefficient to control the step size ( CF) has been proposed in this paper as an enhanced alternative towards fine-tuning data-driven multiple-node hormone regulation neuroendocrine-PID (MnHR-NEPID) controller parameters for the multi-input–multi-output (MIMO) gantry crane system. First modification involved a random average location calculation within the algorithm’s updating mechanism to solve the local optima issue. The second modification then introduced tunable CF that enhanced search capacity by enabling users’ resilience towards attaining an offsetting level of exploration and exploitation phases. Effectiveness of the proposed method is evaluated based on the convergence curve and statistical analysis of the fitness function, the total norms of error and input, Wilcoxon’s rank test, time response analysis, and robustness analysis under the influence of external disturbance. Comparative findings alongside other existing metaheuristic-based algorithms confirmed excellence of the proposed method through its superior performance against the conventional MPA, particle swarm optimization (PSO), grey wolf optimizer (GWO), moth-flame optimization (MFO), multi-verse optimizer (MVO), sine-cosine algorithm (SCA), salp-swarm algorithm (SSA), slime mould algorithm (SMA), flow direction algorithm (FDA), and the formally published adaptive safe experimentation dynamics (ASED)-based methods

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    Advanced Discrete-Time Control Methods for Industrial Applications

    Full text link
    This thesis focuses on developing advanced control methods for two industrial systems in discrete-time aiming to enhance their performance in delivering the control objectives as well as considering the practical aspects. The first part addresses wind power dispatch into the electricity network using a battery energy storage system (BESS). To manage the amount of energy sold to the electricity market, a novel control scheme is developed based on discrete-time model predictive control (MPC) to ensure the optimal operation of the BESS in the presence of practical constraints. The control scheme follows a decision policy to sell more energy at peak demand times and store it at off-peaks in compliance with the Australian National Electricity Market rules. The performance of the control system is assessed under different scenarios using actual wind farm and electricity price data in simulation environment. The second part considers the control of overhead crane systems for automatic operation. To achieve high-speed load transportation with high-precision and minimum load swings, a new modeling approach is developed based on independent joint control strategy which considers actuators as the main plant. The nonlinearities of overhead crane dynamics are treated as disturbances acting on each actuator. The resulting model enables us to estimate the unknown parameters of the system including coulomb friction constants. A novel load swing control is also designed based on passivity-based control to suppress load swings. Two discrete-time controllers are then developed based on MPC and state feedback control to track reference trajectories along with a feedforward control to compensate for disturbances using computed torque control and a novel disturbance observer. The practical results on an experimental overhead crane setup demonstrate the high performance of the designed control systems.Comment: PhD Thesis, 230 page

    An improved marine predators algorithm tuned data-driven multiple-node hormone regulation neuroendocrine-PID controller for multi-input–multi-output gantry crane system

    Get PDF
    Conventionally, researchers have favored the model-based control scheme for controlling gantry crane systems. However, this method necessitates a substantial investment of time and resources in order to develop an accurate mathematical model of the complex crane system. Recognizing this challenge, the current paper introduces a novel data-driven control scheme that relies exclusively on input and output data. Undertaking a couple of modifications to the conventional marine predators algorithm (MPA), random average marine predators algorithm (RAMPA) with tunable adaptive coefficient to control the step size (CF) has been proposed in this paper as an enhanced alternative towards fine-tuning data-driven multiple-node hormone regulation neuroendocrine-PID (MnHR-NEPID) controller parameters for the multi-input–multi-output (MIMO) gantry crane system. First modification involved a random average location calculation within the algorithm’s updating mechanism to solve the local optima issue. The second modification then introduced tunable CF that enhanced search capacity by enabling users’ resilience towards attaining an offsetting level of exploration and exploitation phases. Effectiveness of the proposed method is evaluated based on the convergence curve and statistical analysis of the fitness function, the total norms of error and input, Wilcoxon’s rank test, time response analysis, and robustness analysis under the influence of external disturbance. Comparative findings alongside other existing metaheuristic-based algorithms confirmed excellence of the proposed method through its superior performance against the conventional MPA, particle swarm optimization (PSO), grey wolf optimizer (GWO), moth-flame optimization (MFO), multi-verse optimizer (MVO), sine-cosine algorithm (SCA), salp-swarm algorithm (SSA), slime mould algorithm (SMA), flow direction algorithm (FDA), and the formally published adaptive safe experimentation dynamics (ASED)-based methods

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Novel Lyapunov - based autonomous controllers for Qquadrotors

    Get PDF
    In this paper, we look into the dynamic motion planning and control of an unmanned aerial vehicle, namely, the quadrotor, governed by its dynamical equations. It is shown for the first time that the Direct or the Second Method of Lyapunov is an effective tool to derive a set of continuous nonlinear control laws that not only provide smooth trajectories from a designated initial position to a designated target, but also continuously minimise the roll and pitch of the quadrotor en route to its targets. The latter successfully addresses the challenging problem of a quadrotor autonomously transporting valuable and fragile payloads safely to the designated target. Computer simulations are used to illustrate the effectiveness of the proposed control laws
    • …
    corecore