1,988 research outputs found

    Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer

    Get PDF
    In this paper, the adaptive fuzzy tracking control is proposed for a class of multi-input and multioutput (MIMO) nonlinear systems in the presence of system uncertainties, unknown non-symmetric input saturation and external disturbances. Fuzzy logic systems (FLS) are used to approximate the system uncertainty of MIMO nonlinear systems. Then, the compound disturbance containing the approximation error and the time-varying external disturbance that cannot be directly measured are estimated via a disturbance observer. By appropriately choosing the gain matrix, the disturbance observer can approximate the compound disturbance well and the estimate error converges to a compact set. This control strategy is further extended to develop adaptive fuzzy tracking control for MIMO nonlinear systems by coping with practical issues in engineering applications, in particular unknown non-symmetric input saturation and control singularity. Within this setting, the disturbance observer technique is combined with the FLS approximation technique to compensate for the effects of unknown input saturation and control singularity. Lyapunov approach based analysis shows that semi-global uniform boundedness of the closed-loop signals is guaranteed under the proposed tracking control techniques. Numerical simulation results are presented to illustrate the effectiveness of the proposed tracking control schemes

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    Robust fractional order PI control for cardiac output stabilisation

    Get PDF
    Drug regulatory paradigms are dependent on the hemodynamic system as it serves to distribute and clear the drug in/from the body. While focusing on the objective of the drug paradigm at hand, it is important to maintain stable hemodynamic variables. In this work, a biomedical application requiring robust control properties has been used to illustrate the potential of an autotuning method, referred to as the fractional order robust autotuner. The method is an extension of a previously presented autotuning principle and produces controllers which are robust to system gain variations. The feature of automatic tuning of controller parameters can be of great use for data-driven adaptation during intra-patient variability conditions. Fractional order PI/PD controllers are generalizations of the well-known PI/PD controllers that exhibit an extra parameter usually used to enhance the robustness of the closed loop system. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Stable and robust fuzzy control for uncertain nonlinear systems

    Get PDF
    Author name used in this publication: F. H. F. LeungAuthor name used in this publication: P. K. S. Tam2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated
    corecore