11,784 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    One-Chip Solution to Intelligent Robot Control: Implementing Hexapod Subsumption Architecture Using a Contemporary Microprocessor

    Full text link
    This paper introduces a six-legged autonomous robot managed by a single controller and a software core modeled on subsumption architecture. We begin by discussing the features and capabilities of IsoPod, a new processor for robotics which has enabled a streamlined implementation of our project. We argue that this processor offers a unique set of hardware and software features, making it a practical development platform for robotics in general and for subsumption-based control architectures in particular. Next, we summarize original ideas on subsumption architecture implementation for a six-legged robot, as presented by its inventor Rodney Brooks in 1980s. A comparison is then made to a more recent example of a hexapod control architecture based on subsumption. The merits of both systems are analyzed and a new subsumption architecture layout is formulated as a response. We conclude with some remarks regarding the development of this project as a hint at new potentials for intelligent robot design, opened by a recent development in embedded controller market

    Spatial Programming for Industrial Robots through Task Demonstration

    Get PDF
    We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks

    SARSCEST (human factors)

    Get PDF
    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed

    A Framework of Hybrid Force/Motion Skills Learning for Robots

    Get PDF
    Human factors and human-centred design philosophy are highly desired in today’s robotics applications such as human-robot interaction (HRI). Several studies showed that endowing robots of human-like interaction skills can not only make them more likeable but also improve their performance. In particular, skill transfer by imitation learning can increase usability and acceptability of robots by the users without computer programming skills. In fact, besides positional information, muscle stiffness of the human arm, contact force with the environment also play important roles in understanding and generating human-like manipulation behaviours for robots, e.g., in physical HRI and tele-operation. To this end, we present a novel robot learning framework based on Dynamic Movement Primitives (DMPs), taking into consideration both the positional and the contact force profiles for human-robot skills transferring. Distinguished from the conventional method involving only the motion information, the proposed framework combines two sets of DMPs, which are built to model the motion trajectory and the force variation of the robot manipulator, respectively. Thus, a hybrid force/motion control approach is taken to ensure the accurate tracking and reproduction of the desired positional and force motor skills. Meanwhile, in order to simplify the control system, a momentum-based force observer is applied to estimate the contact force instead of employing force sensors. To deploy the learned motion-force robot manipulation skills to a broader variety of tasks, the generalization of these DMP models in actual situations is also considered. Comparative experiments have been conducted using a Baxter Robot to verify the effectiveness of the proposed learning framework on real-world scenarios like cleaning a table

    Programming Robots by Demonstration using Augmented Reality

    Get PDF
    O mundo está a viver a quarta revolução industrial, a Indústria 4.0; marcada pela crescente inteligência e automação dos sistemas industriais. No entanto, existem tarefas que são muito complexas ou caras para serem totalmente automatizadas, seria mais eficiente se a máquina pudesse trabalhar com o ser humano, não apenas partilhando o mesmo espaço de trabalho, mas como colaboradores úteis. O foco da investigação para solucionar esse problema está em sistemas de interação homem-robô, percebendo em que aplicações podem ser úteis para implementar e quais são os desafios que enfrentam. Neste contexto, uma melhor interação entre as máquinas e os operadores pode levar a múltiplos benefícios, como menos, melhor e mais fácil treino, um ambiente mais seguro para o operador e a capacidade de resolver problemas mais rapidamente. O tema desta dissertação é relevante na medida em que é necessário aprender e implementar as tecnologias que mais contribuem para encontrar soluções para um trabalho mais simples e eficiente na indústria. Assim, é proposto o desenvolvimento de um protótipo industrial de um sistema de interação homem-máquina através de Realidade Estendida, no qual o objetivo é habilitar um operador industrial sem experiência em programação, a programar um robô colaborativo utilizando o Microsoft HoloLens 2. O sistema desenvolvido é dividido em duas partes distintas: o sistema de tracking, que regista o movimento das mãos do operador, e o sistema de tradução da programação por demonstração, que constrói o programa a ser enviado ao robô para que ele se mova. O sistema de monitorização e supervisão é executado pelo Microsoft HoloLens 2, utilizando a plataforma Unity e Visual Studio para programá-lo. A base do sistema de programação por demonstração foi desenvolvida em Robot Operating System (ROS). Os robôs incluídos nesta interface são Universal Robots UR5 (robô colaborativo) e ABB IRB 2600 (robô industrial). Adicionalmente, a interface foi construída para incorporar facilmente mais robôs.The world is living the fourth industrial revolution, Industry 4.0; marked by the increasing intelligence and automation of manufacturing systems. Nevertheless, there are types of tasks that are too complex or too expensive to be fully automated, it would be more efficient if the machine were able to work with the human, not only by sharing the same workspace but also as useful collaborators. A possible solution to that problem is on human-robot interactions systems, understanding the applications where they can be helpful to implement and what are the challenges they face. In this context a better interaction between the machines and the operators can lead to multiples benefits, like less, better, and easier training, a safer environment for the operator and the capacity to solve problems quicker. The focus of this dissertation is relevant as it is necessary to learn and implement the technologies which most contribute to find solutions for a simpler and more efficient work in industry. This dissertation proposes the development of an industrial prototype of a human machine interaction system through Extended Reality (XR), in which the objective is to enable an industrial operator without any programming experience to program a collaborative robot using the Microsoft HoloLens 2. The system itself is divided into two different parts: the tracking system, which records the operator's hand movement, and the translator of the programming by demonstration system, which builds the program to be sent to the robot to execute the task. The monitoring and supervision system is executed by the Microsoft HoloLens 2, using the Unity platform and Visual Studio to program it. The programming by demonstration system's core was developed in Robot Operating System (ROS). The robots included in this interface are Universal Robots UR5 (collaborative robot) and ABB IRB 2600 (industrial robot). Moreover, the interface was built to easily add other robots
    corecore