158 research outputs found

    Investigation on SVM-Backstepping sensorless control of five-phase open-end winding induction motor based on model reference adaptive system and parameter estimation

    Get PDF
    This paper deals with a new control technique applied to five-phase induction motor under open-end stator winding (FPIM-OESW) topology using the backstepping nonlinear control. The main objective is to improve the dynamics of this kind of machine, which is intended to be used in high power industrial application, where the maintenance is difficult and the fault tolerant is needed to ensure the continuous motor operating mode with minimized number of interruption. This control technique is combined with the Space Vector Pulse Width Modulation (SVPWM) to maintain a fixed switching frequency. In addition, the Model Reference Adaptive System (MRAS) concept is used for the estimation of the load torque, the rotor flux and the rotor speed to overcome the main drawbacks presented with the previous sensorless systems concepts. However, the great sensitivity to the changes of the motor internal parameters and it operating instability problems, especially in low-speed operating region, that causes an estimation error of the rotor speed, is the most disadvantage of the MRAS technique. Therefore, to solve this problem, an estimation method of the motor internal parameters such as the rotor resistance, the stator resistance and the magnetizing inductance, is proposed in this paper. Where, the main aim is to improve furthermore the control performance, to reduce the computational complexity and to minimize the rotor speed estimation error. The obtained simulation results confirm the enhanced performance and the clear efficacy of the proposed control technique under a variety of cases of different operating conditions. - 2019 Karabuk UniversityScopu

    Model predictive MRAS estimator for sensorless induction motor drives

    Get PDF
    Ph. D. ThesisThe project presents a novel model predictive reference adaptive system (MRAS) speed observer for sensorless induction motor drives applications. The proposed observer is based on the finite control set-model predictive control principle. The rotor position is calculated using a search-based optimization algorithm which ensures a minimum speed tuning error signal at each sampling period. This eliminates the need for a proportional integral (PI) controller which is conventionally employed in the adaption mechanism of MRAS observers. Extensive simulation and experimental tests have been carried out to evaluate the performance of the proposed observer. Both the simulation and the experimental results show improved performance of the MRAS scheme in both open and closed-loop sensorless modes of operation at low speeds and with different loading conditions including regeneration. The proposed scheme also improves the system robustness against motor parameter variations and increases the maximum bandwidth of the speed loop controller. However, some of the experimental results show oscillations in the estimated rotor speed, especially at light loading conditions. Furthermore, due to the use of the voltage equation in the reference model, the scheme remains sensitive, to a certain extent, to the variations in the machine parameters. Therefore, to reduce rotor speed oscillations at light loading conditions, an adaptive filter is employed in the speed extraction mechanism, where an adaptation mechanism is proposed to adapt the filter time constant depending on the dynamic state of the system. Furthermore, a voltage compensating method is employed in the reference model of the MP-MRAS observer to address the problems associated with sensitivity to motor parameter variation. The performance of the proposed scheme is evaluated both experimentally and by simulation. Results confirm the effectiveness of the proposed scheme for sensorless speed control of IM drives

    Robust Flux and Speed State Observer Design for Sensorless Control of a Double Star Induction Motor

    Get PDF
    In this paper, a robust flux and speed observer for sensorless control of a double star induction motor is presented. Proper operation of vector control of the double star induction motor requires reliable information from the process to be controlled. This information can come from mechanical sensors (rotational speed, angular position). Furthermore, mechanical flux and speed sensors are generally expensive and fragile and affect the reliability of the system. However, the control without sensors must-have performance that does not deviate too much from that which we would have had with a mechanical sensor. In this framework, this work mainly deals with the estimation of the flux and speed using a robust state observer in view of sensorless vector control of the double star induction motor. The evaluation criteria are the static and dynamic performances of the system as well as the errors between the reference values and those estimated. Extensive simulation results and robustness tests are presented to evaluate the performance of the proposed sensorless control scheme. Furthermore, under the same test conditions, a detailed comparison between the proposed state observer and the sliding mode-MRAS technique is carried out where the results of its evaluation are investigated in terms of their speed and flux tracking capability during load and speed transients and also with parameter variation. It is worth mentioning that the proposed state observer can obtain both high current quality and low torque ripples, which show better performance than that in the MRAS system

    A neuro-fuzzy approach for stator resistance estimation of induction motor = pendekatan neuro-fuzzy untuk meramal rintangan stator pada motor induksi

    Get PDF
    During the operation of induction motor, stator resistance changes incessantly with the temperature of the working machine. This situation may cause an error in rotor resistance estimation of the same magnitude and will produce an error between the actual and estimated motor torque which can leads to motor breakdown in worst cases. Therefore, this project will propose an approach to estimate the changes of induction motor stator resistance using neuro-fuzzy. Then, it will be compared with conventional method like P1 estimator to see the effectiveness. The behaviour of the induction machine will be analyzed when the stator resistance is changed. Based on the changes, a corrective procedure will be applied to ensure the stabilities of the induction motor. Generally, this project can be divided into three main parts which are design of induction motor, design of neuro-fuzzy and PT estimator, and corrective procedure for the induction machine. The Newcastle Drives Simulation Library will be used to design the induction motor model and MATLAB SIMULINK will be used to design the stator current observer. The neuro-fuzzy estimator will be designed based on Sugeno Method Fuzzy Inference System

    Machine Model Based Speed Estimation Schemes for Speed Encoderless Induction Motor Drives: a Survey

    Full text link
    Speed Estimation without speed sensors is a complex phenomenon and is overly dependent on the machine parameters. It is all the more significant during low speed or near zero speed operation. There are several approaches to speed estimation of an induction motor. Eventually, they can be classified into two types, namely, estimation based on the machine model and estimation based on magnetic saliency and air gap space harmonics. This paper, through a brief literature survey, attempts to give an overview of the fundamentals and the current trends in various machine model based speed estimation techniques which have occupied and continue to occupy a great amount of research space

    Machine model based Speed Estimation Schemes for Speed Encoderless Induction Motor Drives: A Survey

    Get PDF
    Speed Estimation without speed sensors is a complex phenomenon and is overly dependent on the machine parameters. It is all the more significant during low speed or near zero speed operation. There are several approaches to speed estimation of an induction motor. Eventually, they can be classified into two types, namely, estimation based on the machine model and estimation based on magnetic saliency and air gap space harmonics. This paper, through a brief literature survey, attempts to give an overview of the fundamentals and the current trends in various machine model based speed estimation techniques which have occupied and continue to occupy a great amount of research space

    Investigations on Direct Torque and Flux Control of Speed Sensorless Induction Motor Drive

    Get PDF
    The Induction motors (IM) are used worldwide as the workhorse in most of the industrial applications due to their simplicity, high performance, robustness and capability of operating in hazardous as well as extreme environmental conditions. However, the speed control of IM is complex as compared to the DC motor due to the presence of coupling between torque and flux producing components. The speed of the IM can be controlled using scalar control and vector control techniques. The most commonly used technique for speed control of IM is scalar control method. In this method, only the magnitude and frequency of the stator voltage or current is regulated. This method is easy to implement, but suffers from the poor dynamic response. Therefore, the vector control or field oriented control (FOC) is used for IM drives to achieve improved dynamic performance. In this method, the IM is operated like a fully compensated and separately excited DC motor. However, it requires more coordinate transformations, current controllers and modulation schemes. In order to get quick dynamic performance, direct torque and flux controlled (DTFC) IM drive is used. The DTFC is achieved by direct and independent control of flux linkages and electromagnetic torque through the selection of optimal inverter switching which gives fast torque and flux response without the use of current controllers, more coordinate transformations and modulation schemes. Many industries have marked various forms of IM drives using DTFC since 1980. The linear fixed-gain proportional-integral (PI) based speed controller is used in DTFC of an IM drive (IMD) under various operating modes. However, The PI controller (PIC) requires proper and accurate gain values to get high performance. The PIC gain values are tuned for a specific operating point and which may not be able to perform satisfactorily when the load torque and operating point changes. Therefore, the PIC is replaced by Type-1 fuzzy logic controller (T1FLC) to improve the dynamic performance over a wide speed range and also load torque disturbance rejections. The T1FLC is simple, easy to implement and effectively deals with the nonlinear control system without requiring complex mathematical equations using simple logical rules, which are decided by the expert. In order to further improve the controller performance, the T1FLC is replaced by Type-2 fuzzy logic controller (T2FLC). The T2FLC effectively handles the large footprint of uncertainties compared to the T1FLC due to the availability of three-dimensional control with type-reduction technique (i.e. Type-2 fuzzy sets and Type-2 reducer set) in the defuzzification process, whereas the T1FLC consists only a Type-1 fuzzy sets and single membership function. The training data for T1FLC and T2FLC is selected based on the PIC scheme

    Speed Sensorless Induction Motor Drive Control for Electric Vehicles

    Get PDF
    Fast diminishing fossil fuel resources, deterioration in air quality and concerns for environmental protection, continuously promote the interest in the research and development of Alternative Energy Vehicles (AEVs). Traction motor drive is an integral part and common electric propulsion system in all kinds of AEVs. It plays an utmost significant role in the development of electrified transport industry. Application of Induction Motor (IM) drive is not only limited to the domestic and industrial applications but also has an ubiquitous influence in the modern electrified transport sector. IM is characterized by a simple and rugged structure, operational reliability, low maintenance, low cost, ability to operate in a hostile environment and high dynamic performance. However, IM is one of the widely accepted choices by Electric Vehicles (EVs) manufacturer. At present, Variable speed IM drive is almost replacing the traditional DC motor drive in a wide range of applications including EVs where a fast dynamic response is required. It became possible after the technological advancement and development in the field of power switching devices, digital signal processing and recently intelligent control systems have led to great improvements in the dynamic performance of traction drives. Speed Sensorless control strategies offer better system’s reliability and robustness and reduce the drive cost, size and maintenance requirements. Sensorless IM drives have been applied on medium and high speed applications successfully. However, instability at low speed and under different load disturbance conditions are still a critical problem in this research field and has not been robustly achieved. Some application such as traction drives and cranes are required to maintain the desired level of torque down to low speed levels with uncertain load torque disturbance conditions. Speed and torque control is more important particularly in motor-in-wheel traction drive train configuration EVs where vehicle wheel rim is directly connected to the motor shaft to control the speed and torque. The main purpose of this research is to improve the dynamic performance of conventional proportional-integral controller based model reference adaptive system (PI-MRAS) speed observer by using several speed profiles under different load torque disturbance conditions, which is uncertain during the whole vehicle operation apart from the vehicle own load. Since, vehicle has to face different road conditions and aerodynamic effects which continuously change the net load torque effect on the traction drive. This thesis proposes different novel methods based on the fuzzy logic control (FLC) and sliding mode control (SMC) with rotor flux MRAS. Numerous simulations and experimental tests designed with respect to the EV operation are carried out to investigate the speed estimation performance of the proposed schemes and compared with the PI-MRAS speed observer. For simulation and experimental purpose, Matlab-Simulink environment and dSPACE DS-1104 controller board are used respectively. The results presented in this thesis show great performance improvements of the proposed schemes in speed estimation & load disturbance rejection capability and provide a suitable choice of speed sensoless IM drive control for EVs with cost effectiveness
    corecore