1,244 research outputs found

    Bit error simulation of DQPSK for a slow frequency hopping CDMA system in mobile radio communications

    Get PDF

    A Comparison of CDMA and Frequency Hopping in a Cellular Environment

    Get PDF
    This paper compares the performances of direct sequence code division multiple access (CDMA) and frequency hopping (FH) schemes in a cellular multiuser environment. The multiuser channel model incorporates the effects of propagation, frequency selective fading, and interference among users in the presence of a constrained system bandwidth. This channel model is applicable for cellular mobile communications, as well as other forms of personal communications. The CDMA and FH systems are compared using BPSK modulation. The main point of contrast between these systems is that the orthogonal hopping patterns in a FH system result in a decreased additive interference power, however the frequency spreading nature of CDMA results in the ability to combat fading. An information theoretic analysis is presented, which shows that system capacities are far above the performances achieved using simple coding scheme

    EXIT Chart Based Joint Code-Rate and Spreading-Factor Optimisation of Single-Carrier Interleave Division Multiple Access

    No full text
    Abstract—In this paper, we consider the joint code-rate and spreading-factor optimisation of turbo-style iterative joint detection and decoding assisted single-carrier interleave division multiple access (SC-IDMA) systems using different-rate convolutional codes and Extrinsic Information Transfer (EXIT) charts, when communicating over Additive White Gaussian Noise (AWGN) channels. More explicitly, we study the extrinsic information exchange between two serial concatenated components and maximise the number of users supported by the SC-IDMA system under the constraint of a fixed bandwidth expansion factor, while maintaining a predefined Bit Error Ratio (BER) versus Eb/N0 performance. We found that an optimum coderate and spreading-factor combination can be found for the SC-IDMA system at low Eb/N0 values, where maintaining a low BER inevitably requires the employment of channel coding. By contrast, at high Eb/N0 the system performs best, when no channel coding is used, i.e. DS-spreading is the only means of bandwidth expansion

    A simulation environment for CDMA wireless communication systems in AWGN channels

    Get PDF
    The goal of this work is the development of a, wireless communication system simulator. The simulator has been developed primarily to aid in the studies of Code Division Multiple Access (CDMA) digital cellular systems. We begin by introducing the fundamentals of spread spectrum communications and the motivation for this work. We then take a detailed look at CDMA systems and their structure. We then verify the accuracy of the simulator by using it to simulate some familiar system scenarios. We end this work by presenting conclusions and suggestions for further work

    Variable rate adaptive modulation for DS-CDMA

    Get PDF
    An adaptive coding scheme is introduced for a discrete sequence code-division multiple-access system. The system uses noncoherent M-ary orthogonal modulation with RAKE receiver and power control. Both a fast fading channel and a combined fast fading, shadowing and power control channel are considered. Analytical bounds and simulations are done to evaluate the performance of the system. It is found that there is significant improvement in the average throughput and the bit-error-rate performance in the adaptive coding scheme. The amount of improvement drops with the increase of diversity branches used. More importantly, it is found that adaptive coding scheme is relatively robust to shadowing, while fix-rate codes are ineffective in the shadowing environment. Finally, adaptive coding scheme is found to be robust to mobile speed, feedback delay, and finite interleaving depth.published_or_final_versio

    Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony

    No full text
    Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Why is CDMA the solution for mobile satellite communication

    Get PDF
    It is demonstrated that spread spectrum Code Division Multiple Access (CDMA) systems provide an economically superior solution to satellite mobile communications by increasing the system maximum capacity with respect to single channel per carrier Frequency Division Multiple Access (FDMA) systems. Following the comparative analysis of CDMA and FDMA systems, the design of a model that was developed to test the feasibility of the approach and the performance of a spread spectrum system in a mobile environment. Results of extensive computer simulations as well as laboratory and field tests results are presented

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance
    corecore