3,217 research outputs found

    Recent advances in solid-state organic lasers

    Full text link
    Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the great challenges remaining for achieving direct electrical pumping. Finally, we discuss the very recent demonstration of new kinds of organic lasers based on polaritons or surface plasmons, which open new and very promising routes in the field of organic nanophotonics

    Tridimensional Surface Relief Modulation of Polymeric Films

    Get PDF

    Structuring and functionalization of non-metallic materials using direct laser interference patterning: A review

    Get PDF
    Direct laser interference patterning (DLIP) is a laser-based surface structuring method that stands out for its high throughput, flexibility and resolution for laboratory and industrial manufacturing. This top-down technique relies on the formation of an interference pattern by overlapping multiple laser beams onto the sample surface and thus producing a periodic texture by melting and/or ablating the material. Driven by the large industrial sectors, DLIP has been extensively used in the last decades to functionalize metallic surfaces, such as steel, aluminium, copper or nickel. Even so, DLIP processing of non-metallic materials has been gaining popularity in promising fields such as photonics, optoelectronics, nanotechnology and biomedicine. This review aims to comprehensively collect the main findings of DLIP structuring of polymers, ceramics, composites, semiconductors and other non-metals and outline their most relevant results. This contribution also presents the mechanisms by which laser radiation interacts with non-metallic materials in the DLIP process and summarizes the developed surface functions and their applications in different fields.Fil: Mulko, Lucinda. Technische Universität Dresden; AlemaniaFil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Lasagni, Andrés Fabián. Technische Universität Dresden; Alemani

    Characterisation of laser processed bio-compatible materials and the realisation of electro optical diffraction gratings

    Get PDF
    Laser processing methods using excimer lasers have become very attractive for processing materials and the fabrication of micro and nano optical components. Diffraction gratings are used in a wide range of applications and require different fabrication methods. These components can be fabricated from a variety of biocompatible polymers. In this work, an Argon Fluoride (ArF) excimer laser operating at a wavelength of 193 nm has been used to process chitosan and agarose substrates. These materials have been characterised for differing laser processing conditions. Diffraction gratings and component demonstrators have been realised using Laser Direct writing (LDW) and nanoimprinting lithography (NIL). Characterisation of the ArF 193 nm laser work involves ablation threshold, optical absorption measurements and quantification of structural and morphological changes. This results can be used to identify the ideal laser fluence to be used for the production of a diffraction grating and similar optical components fabricated from chitosan. An ablation threshold of chitosan at 193 nm wavelength has been measured as 85 mJcm⁻² and an optical absorption coefficient of 3×10³ cm⁻¹.A diffraction grating structure, measuring 12 μm, was generated in biocompatible materials films; chitosan and agarose, using a laser processing method. The results showed that the interaction between the laser and these materials can potentially open the pathway for a wide range of practical, real world applications such as optical and biomedical applications. Diffraction gratings with a feature size of 1 μm were successfully formed on the biocompatible material free standing films using a NIL technique. Microstructure cross grating patterning made of chitosan and agarose have been fabricated by ArF excimer laser processing using a mask projection ablation technique. Temperature rise calculations have been carried out by COMSOL™ Multi-Physics v5.3 using a Finite Element Method (FEM), to predict the temperature rise during laser ablation processing of chitosan and agarose. In addition, COMSOL™ Multi-physics v5.3 has been used to simulate the electric field in the vicinity of a diffraction grating that is illuminated with light from a HeNe laser emitting at a wavelength of 632.8 nm.The final experimental work investigated the possibility of realising 5CB liquid crystal doped chitosan diffraction gratings doped with Sudan Black B (SBB) dye to enhance the absorption properties at 632.8 nm. Diffraction gratings was fabricated using two intersecting beams from a HeNe laser. Polymer Dispersed Liquid Crystal (PDLC) chitosan doped with 5CB and SBB dye diffraction gratings were experimentally characterised

    Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors

    Full text link
    Metallic gratings were fabricated using high energy laser interference lithography with a frequency tripled Nd:YAG nanosecond laser. The grating structures were first recorded in a photosensitive layer and afterwards transferred to an Au film. High quality Au gratings with a period of 770 nm and peak-to-valley heights of 20-60 nm exhibiting plasmonic resonance response were successfully designed, fabricated and characterized.Comment: 10 pages, 7 figure

    Fibre Bragg Grating and Long Period Grating Sensors in Polymer Optical Fibres

    Get PDF

    Integrated polymer photonics : fabrication, design, characterization and applications

    Get PDF
    [no abstract

    Polymer Resonant Waveguide Gratings

    Get PDF
    This chapter deals with the advances in polymeric waveguide gratings for filtering and integrated optics applications. Optical polymer materials are widely used for planar and corrugated micro-optical waveguide grating structures ranging from down a micrometer to several hundred micrometers. Light in a polymeric waveguide is transmitted in discrete modes whose propagation orders depend on incident wavelength, waveguide dimensional parameters, and material properties. Diffracted optical structures are permittivity-modulated microstructures whose micro-relief surface profiles exhibit global/local periodicity. The resonant nature and location of such globally periodic structures (diffraction gratings) excite leaky waveguide modes which couple incident light into reflected/transmitted plane wave diffraction orders. It describes design & analysis, fabrication, and characterization of sub-wavelength polymer grating structures replicated in different polymeric materials (polycarbonate, cyclic olefin copolymer, Ormocomp) by a simple, cost-effective, accurate, and large scale production method. The master stamp (mold) for polymer replication is fabricated with an etchless process with smooth surface profile

    Imprinted micro- and nanophotonic sensors

    Get PDF
    corecore