1,085,746 research outputs found

    Nonautonomous saddle-node bifurcations: random and deterministic forcing

    Get PDF
    We study the effect of external forcing on the saddle-node bifurcation pattern of interval maps. By replacing fixed points of unperturbed maps by invariant graphs, we obtain direct analogues to the classical result both for random forcing by measure-preserving dynamical systems and for deterministic forcing by homeomorphisms of compact metric spaces. Additional assumptions like ergodicity or minimality of the forcing process then yield further information about the dynamics. The main difference to the unforced situation is that at the critical bifurcation parameter, two alternatives exist. In addition to the possibility of a unique neutral invariant graph, corresponding to a neutral fixed point, a pair of so-called pinched invariant graphs may occur. In quasiperiodically forced systems, these are often referred to as 'strange non-chaotic attractors'. The results on deterministic forcing can be considered as an extension of the work of Novo, Nunez, Obaya and Sanz on nonautonomous convex scalar differential equations. As a by-product, we also give a generalisation of a result by Sturman and Stark on the structure of minimal sets in forced systems.Comment: 17 pages, 5 figure

    Unrestricted State Complexity of Binary Operations on Regular and Ideal Languages

    Get PDF
    We study the state complexity of binary operations on regular languages over different alphabets. It is known that if Lm′L'_m and LnL_n are languages of state complexities mm and nn, respectively, and restricted to the same alphabet, the state complexity of any binary boolean operation on Lm′L'_m and LnL_n is mnmn, and that of product (concatenation) is m2n−2n−1m 2^n - 2^{n-1}. In contrast to this, we show that if Lm′L'_m and LnL_n are over different alphabets, the state complexity of union and symmetric difference is (m+1)(n+1)(m+1)(n+1), that of difference is mn+mmn+m, that of intersection is mnmn, and that of product is m2n+2n−1m2^n+2^{n-1}. We also study unrestricted complexity of binary operations in the classes of regular right, left, and two-sided ideals, and derive tight upper bounds. The bounds for product of the unrestricted cases (with the bounds for the restricted cases in parentheses) are as follows: right ideals m+2n−2+2n−1m+2^{n-2}+2^{n-1} (m+2n−2m+2^{n-2}); left ideals mn+m+nmn+m+n (m+n−1m+n-1); two-sided ideals m+2nm+2n (m+n−1m+n-1). The state complexities of boolean operations on all three types of ideals are the same as those of arbitrary regular languages, whereas that is not the case if the alphabets of the arguments are the same. Finally, we update the known results about most complex regular, right-ideal, left-ideal, and two-sided-ideal languages to include the unrestricted cases.Comment: 30 pages, 15 figures. This paper is a revised and expanded version of the DCFS 2016 conference paper, also posted previously as arXiv:1602.01387v3. The expanded version has appeared in J. Autom. Lang. Comb. 22 (1-3), 29-59, 2017, the issue of selected papers from DCFS 2016. This version corrects the proof of distinguishability of states in the difference operation on p. 12 in arXiv:1609.04439v

    High-rate self-synchronizing codes

    Full text link
    Self-synchronization under the presence of additive noise can be achieved by allocating a certain number of bits of each codeword as markers for synchronization. Difference systems of sets are combinatorial designs which specify the positions of synchronization markers in codewords in such a way that the resulting error-tolerant self-synchronizing codes may be realized as cosets of linear codes. Ideally, difference systems of sets should sacrifice as few bits as possible for a given code length, alphabet size, and error-tolerance capability. However, it seems difficult to attain optimality with respect to known bounds when the noise level is relatively low. In fact, the majority of known optimal difference systems of sets are for exceptionally noisy channels, requiring a substantial amount of bits for synchronization. To address this problem, we present constructions for difference systems of sets that allow for higher information rates while sacrificing optimality to only a small extent. Our constructions utilize optimal difference systems of sets as ingredients and, when applied carefully, generate asymptotically optimal ones with higher information rates. We also give direct constructions for optimal difference systems of sets with high information rates and error-tolerance that generate binary and ternary self-synchronizing codes.Comment: 9 pages, no figure, 2 tables. Final accepted version for publication in the IEEE Transactions on Information Theory. Material presented in part at the International Symposium on Information Theory and its Applications, Honolulu, HI USA, October 201

    Bipolar picture fuzzy sets and relations with applications

    Get PDF
    The notions of both the bipolar fuzzy sets and picture fuzzy sets have been studied by many authors, the bipolar picture fuzzy set is the nice combination of these two notions. Basically, the concepts we present in our study are the direct extensions of both the bipolar fuzzy sets and picture fuzzy sets. In this study, we add few more operations and results in the theory of the bipolar picture fuzzy sets. We also initiate the notion of bipolar picture fuzzy relations along with their applications. We present numerous basic operations along with the algebraic sums, bounded sums, algebraic product, bounded difference on bipolar picture fuzzy sets. Different types of distances between two bipolar picture fuzzy sets are also addressed. We provide the application of bipolar picture fuzzy sets towards decision making theory along with its algorithm. Afterward, we introduce different types of bipolar picture fuzzy relations like bipolar picture fuzzy reflexive, symmetric and transitive relations. Subsequently, we introduce the concepts of the bipolar picture fuzzy equivalence relation and partition. We also produce numerous interesting results based on these relations. Finally, we establish the criteria for the detection of covid-19 at the base of bipolar picture fuzzy relations
    • …
    corecore