21 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Modeling and Halftoning for Multichannel Printers: A Spectral Approach

    Get PDF
    Printing has been has been the major communication medium for many centuries. In the last twenty years, multichannel printing has brought new opportunities and challenges. Beside of extended colour gamut of the multichannel printer, the opportunity was presented to use a multichannel printer for ‘spectral printing’. The aim of spectral printing is typically the same as for colour printing; that is, to match input signal with printing specific ink combinations. In order to control printers so that the combination or mixture of inks results in specific colour or spectra requires a spectral reflectance printer model that estimates reflectance spectra from nominal dot coverage. The printer models have one of the key roles in accurate communication of colour to the printed media. Accordingly, this has been one of the most active research areas in printing. The research direction was toward improvement of the model accuracy, model simplicity and toward minimal resources used by the model in terms of computational power and usage of material. The contribution of the work included in the thesis is also directed toward improvement of the printer models but for the multichannel printing. The thesis is focused primarily on improving existing spectral printer models and developing a new model. In addition, the aim was to develop and implement a multichannel halftoning method which should provide with high image quality. Therefore, the research goals of the thesis were: maximal accuracy of printer models, optimal resource usage and maximal image quality of halftoning and whole spectral reproduction system. Maximal colour accuracy of a model but with the least resources used is achieved by optimizing printer model calibration process. First, estimation of the physical and optical dot gain is performed with newly proposed method and model. Second, a custom training target is estimated using the proposed new method. These two proposed methods and one proposed model were at the same time the means of optimal resource usage, both in computational time and material. The third goal was satisfied with newly proposed halftoning method for multichannel printing. This method also satisfies the goal of optimal computational time but with maintaining high image quality. When applied in spectral reproduction workflow, this halftoning reduces noise induced in an inversion of the printer model. Finally, a case study was conducted on the practical use of multichannel printers and spectral reproduction workflow. In addition to a gamut comparison in colour space, it is shown that otherwise limited reach of spectral printing could potentially be used to simulate spectra and colour of textile fabrics

    Digital halftoning using fibonacci-like sequence pertubation and using vision-models in different color spaces

    Get PDF
    A disadvantage in error diffusion is that it creates objectionable texture patterns at certain gray levels. An approach, threshold perturbation by Fibonacci-like sequences, was studied. This process is simpler than applying a vision model and it also decreases the visible patterns in error diffusion. Vector error diffusion guarantees minimum color distance in binarization provided that a uniform color space is used. Four color spaces were studied in this research. It was found that vector error diffusion in two linear color spaces made no reduction in the quality of halftoning compared with that in CIEL*a*b* or CIEL*u*v* color spaces. A luminance vision MTF and a chroma vision MTF were used in model-based error diffusion to further improve the halftone image quality

    N-Ink Printer Characterization with Barycentric Subdivision

    Get PDF
    Printing with a large number of inks, also called N-ink printing, is a challenging task. The challenges comprise spectral modelling of the printer, color separation, halftoning, and limitations of the amount of inks. Juxtaposed halftoning, a perfectly dot-off-dot halftoning method, has proven to be useful to address some of these challenges. However, for juxtaposed halftones, prediction of colors as a function of ink area-coverages has not yet been fully investigated. The goal of this paper is to introduce a spectral prediction model for N-ink juxtaposed-halftone prints. As the area-coverage domain of juxtaposed inks forms a simplex, we propose a cellular subdivision of the area-coverage domain using barycentric subdivision of simplexes. The barycentric subdivision provides algorithmically straightforward means to design and implement an N-ink color prediction model. Within the subdomain cells, the Yule-Nielsen spectral Neugebauer model is used for the spectral prediction. Our proposed model is highly accurate for prints with a large number of inks while requiring a relatively low number of calibration samples

    Spectral print reproduction modeling and feasibility

    Get PDF

    Halftoning for Multi-Channel Printing : Algorithm Development, Implementation and Verification

    Full text link

    Characterization of Halftone Prints based on Microscale Image Analysis

    Full text link

    The development of multi-channel inkjet printing methodologies for fine art applications

    Get PDF
    This thesis contributes to the defence of the practitioner perspective as a means of undertaking problems addressed predominantly in the field of colour science. Whilst artists have been exploring the use of colour for centuries through their personal practice and education, the rise of industrialised printing processes has generated a shift in focus away from these creative pursuits and into the computational field of colour research. It is argued here that the disposition and knowledge generated by creative practice has significant value to offer developing technologies. While creative practice has limited influence in the development of colour printing, practitioners and users of technology actively engage with the process in ways that extend beyond its intended uses in order to overcome recognised shortcomings. Here consideration is given to this creative engagement as motivation to develop bespoke printing parameters that demonstrate the effects of colour mixing through methods alternative to standard workflows. The research is undertaken incorporating both qualitative and quantitative analysis, collecting data from visual assessments and by examining spectral measurements taken from printed output. Action research is employed to directly access and act upon the constant developments in the art and science disciplines related to inkjet printing, observing and engaging with current methods and techniques employed by practitioners and developers. This method of research has strongly informed the empirical testing that has formed this thesis’s contribution to fine art inkjet printing practice. The research follows a practitioner led approach to designing and testing alternative printing methods and is aimed at expanding the number of discernible colours an inkjet printer can reproduce. The application of this methodology is evidenced through demonstrative prints and a reproduction study undertaken at the National Gallery, London. The experimentation undertaken in partnership with the National Gallery has proven the ability to increase accuracy between colour measured from the original target and reproduction, beyond the capabilities of current inkjet printing workflows
    corecore