16,518 research outputs found

    Re-gauging groupoid, symmetries and degeneracies for graph Hamiltonians and applications to the Gyroid wire network

    No full text
    We study a class of graph Hamiltonians given by a type of quiver representation to which we can associate (non)-commutative geometries. By selecting gauging data, these geometries are realized by matrices through an explicit construction or a Kan extension. We describe the changes in gauge via the action of a re-gauging groupoid. It acts via matrices that give rise to a noncommutative 2-cocycle and hence to a groupoid extension (gerbe). We furthermore show that automorphisms of the underlying graph of the quiver can be lifted to extended symmetry groups of re-gaugings. In the commutative case, we deduce that the extended symmetries act via a projective representation. This yields isotypical decompositions and super-selection rules. We apply these results to the primitive cubic, diamond, gyroid and honeycomb wire networks using representation theory for projective groups and show that all the degeneracies in the spectra are consequences of these enhanced symmetries. This includes the Dirac points of the G(yroid) and the honeycomb systems

    The Fibers and Range of Reduction Graphs in Ciliates

    Full text link
    The biological process of gene assembly has been modeled based on three types of string rewriting rules, called string pointer rules, defined on so-called legal strings. It has been shown that reduction graphs, graphs that are based on the notion of breakpoint graph in the theory of sorting by reversal, for legal strings provide valuable insights into the gene assembly process. We characterize which legal strings obtain the same reduction graph (up to isomorphism), and moreover we characterize which graphs are (isomorphic to) reduction graphs.Comment: 24 pages, 13 figure

    Towards a navigational logic for graphical structures

    Get PDF
    One of the main advantages of the Logic of Nested Conditions, defined by Habel and Pennemann, for reasoning about graphs, is its generality: this logic can be used in the framework of many classes of graphs and graphical structures. It is enough that the category of these structures satisfies certain basic conditions. In a previous paper [14], we extended this logic to be able to deal with graph properties including paths, but this extension was only defined for the category of untyped directed graphs. In addition it seemed difficult to talk about paths abstractly, that is, independently of the given category of graphical structures. In this paper we approach this problem. In particular, given an arbitrary category of graphical structures, we assume that for every object of this category there is an associated edge relation that can be used to define a path relation. Moreover, we consider that edges have some kind of labels and paths can be specified by associating them to a set of label sequences. Then, after the presentation of that general framework, we show how it can be applied to several classes of graphs. Moreover, we present a set of sound inference rules for reasoning in the logic.Peer ReviewedPostprint (author's final draft

    Leavitt path algebras: the first decade

    Full text link
    The algebraic structures known as {\it Leavitt path algebras} were initially developed in 2004 by Ara, Moreno and Pardo, and almost simultaneously (using a different approach) by the author and Aranda Pino. During the intervening decade, these algebras have attracted significant interest and attention, not only from ring theorists, but from analysts working in C∗^*-algebras, group theorists, and symbolic dynamicists as well. The goal of this article is threefold: to introduce the notion of Leavitt path algebras to the general mathematical community; to present some of the important results in the subject; and to describe some of the field's currently unresolved questions.Comment: 53 pages. To appear, Bulletin of Mathematical Sciences. (page numbering in arXiv version will differ from page numbering in BMS published version; numbering of Theorems, etc ... will be the same in both versions
    • …
    corecore