2,864 research outputs found

    Hybrid Evolutionary Shape Manipulation for Efficient Hull Form Design Optimisation

    Get PDF
    ‘Eco-friendly shipping’ and fuel efficiency are gaining much attention in the maritime industry due to increasingly stringent environmental regulations and volatile fuel prices. The shape of hull affects the overall performance in efficiency and stability of ships. Despite the advantages of simulation-based design, the application of a formal optimisation process in actual ship design work is limited. A hybrid approach which integrates a morphing technique into a multi-objective genetic algorithm to automate and optimise the hull form design is developed. It is envisioned that the proposed hybrid approach will improve the hydrodynamic performance as well as overall efficiency of the design process

    Key Challenges and Opportunities in Hull Form Design Optimisation for Marine and Offshore Applications

    Get PDF
    New environmental regulations and volatile fuel prices have resulted in an ever-increasing need for reduction in carbon emission and fuel consumption. Designs of marine and offshore vessels are more demanding with complex operating requirements and oil and gas exploration venturing into deeper waters and hasher environments. Combinations of these factors have led to the need to optimise the design of the hull for the marine and offshore industry. The contribution of this paper is threefold. Firstly, the paper provides a comprehensive review of the state-ofthe- art techniques in hull form design. Specifically, it analyses geometry modelling, shape transformation, optimisation and performance evaluation. Strengths and weaknesses of existing solutions are also discussed. Secondly, key challenges of hull form optimisation specific to the design of marine and offshore vessels are identified and analysed. Thirdly, future trends in performing hull form design optimisation are investigated and possible solutions proposed. A case study on the design optimisation of bulbous bow for passenger ferry vessel to reduce wavemaking resistance is presented using NAPA software. Lastly, main issues and challenges are discussed to stimulate further ideas on future developments in this area, including the use of parallel computing and machine intelligence

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Computer-Aided Conceptual Design Through TRIZ-based Manipulation of Topological Optimizations

    Get PDF
    Organised by: Cranfield UniversityIn a recent project the authors proposed the adoption of Optimization Systems [1] as a bridging element between Computer-Aided Innovation (CAI) and PLM to identify geometrical contradictions [2], a particular case of the TRIZ physical contradiction [3]. A further development of the research has revealed that the solutions obtained from several topological optimizations can be considered as elementary customized modeling features for a specific design task. The topology overcoming the arising geometrical contradiction can be obtained through a manipulation of the density distributions constituting the conflicting pair. Already two strategies of density combination have been identified as capable to solve geometrical contradictions.Mori Seiki – The Machine Tool Compan

    Evolutionary Computation Automated Design of Ship Hull Forms for the Industry 4.0 Era

    Get PDF
    As the marine industry moves towards the industry 4.0 era, the role of automated smart design is becoming increasingly significant. This offers an ability to produce highly customisable design and to integrate with the product-lifecycle process such as digitalised ship production and ship operations to in an efficient process. Currently, the hull form optimisation process is performed manually using `trial-and-error' approach, which is not efficient. Focusing on automated smart design, this paper introduces a hybrid evolutionary algorithm and morphing (HEAM). It works by mapping the entire hull form (phenotype) into a chromosome (genotype), which allows global shape modification using a novel 2D morphing method. By combining this 2D morphing and Genetic Algorithm (GA), it enables optimal hull designs to be produced more rapidly with no user intervention

    Interactive Formfinding for Optimised Fabric-Cast Concrete

    Get PDF

    Efficient Modal Design Variables Applied to Aerodynamic Optimization of a Modern Transport Wing

    Get PDF

    Geometric Modelling and Deformation for Shape Optimization of Ship Hulls and Appendages

    Get PDF
    International audienceThe precise control of geometric models plays an important role in many domains such as computer-aided geometric design and numerical simulation. For shape optimization in computational fluid dynamics (CFD), the choice of control parameters and the way to deform a shape are critical.In this article, we describe a skeleton-based representation of shapes adapted for CFD simulation and automatic shape optimization. Instead of using the control points of a classic B-spline representation, we control the geometry in terms of architectural parameters. We assure valid shapeswith a strong shape consistency control. Deformations of the geometry are performed by solving optimization problems on the skeleton. Finally, a surface reconstruction method is proposed to evaluate the shape's performances with CFD solvers. We illustrate the approach on two problems: thefoil of an AC45 racing sail boat and the bulbous bow of a fishing trawler. For each case, we obtained a set of shape deformations and then we evaluated and analyzed the performances of the different shapes with CFD computations

    Deep neural networks as surrogate models for time-efficient manufacturing process optimisation

    Get PDF
    Manufacturing process optimisation usually amounts to searching optima in high-dimensional parameter spaces. In industrial practice, this search is most often directed by human-subjective expert judgment and trial-and-error experiments. In contrast, high-fidelity simulation models in combination with general-purpose optimisation algorithms, e.g. finite element models and evolutionary algorithms, enable a methodological, virtual process exploration and optimisation. However, reliable process models generally entail significant computation times, which often renders classical, iterative optimisation impracticable. Thus, efficiency is a key factor in optimisation. One option to increase efficiency is surrogate-based optimisation (SBO): SBO seeks to reduce the overall computational load by constructing a numerically inexpensive, data-driven approximation („surrogate“) of the expensive simulation. Traditionally, classical regression techniques are applied for surrogate construction. However, they typically predict a predefined, scalar performance metric only, which limits the amount of usable information gained from simulations. The advent of machine learning (ML) techniques introduces additional options for surrogates: in this work, a deep neural network (DNN) is trained to predict the full strain field instead of a single scalar during textile forming („draping“). Results reveal an improved predictive accuracy as more process-relevant information from the supplied simulations can be extracted. Application of the DNN in an SBO-framework for blank holder optimisation shows improved convergence compared to classical evolutionary algorithms. Thus, DNNs are a promising option for future surrogates in SBO

    Industrial machine structural components’ optimization and redesign

    Get PDF
    Tese de doutoramento em Líderes para as Indústrias TecnológicasO corte por laser é um processo altamente flexível com numerosas vantagens sobre tecnologias concorrentes. O crescimento do mercado é revelador do seu potencial, totalizando 4300 milhões de dólares americanos em 2020. O processo é utilizado em muitas indústrias e as tendências atuais passam por melhorias ao nível do tempo de ciclo, qualidade, custos e exatidão. Os materiais compósitos (nomeadamente polímeros reforçados por fibras) apresentam propriedades mecânicas atrativas para várias aplicações, incluindo a que se relaciona com o presente trabalho: componentes de máquinas industriais. A utilização de compósitos resulta tipicamente em máquinas mais eficientes, exatidão dimensional acrescida, melhor qualidade superficial, melhor eficiência energética e menor impacto ambiental. O principal objetivo deste trabalho é aumentar a produtividade de uma máquina de corte laser, através do redesign de um componente crítico (o pórtico), grande influenciador da exatidão da máquina. Pretende-se com isto criar uma metodologia genérica capaz de auxiliar no processo de redesign de componentes industriais. Dado que o problema lida com dois objetivos concorrentes (redução de peso e aumento de rigidez) e com um elevado número de variáveis, a implementação de uma rotina de otimização é um aspeto central. É crucial demonstrar que o processo de otimização proposto resulta em soluções efetivas. Estas foram validadas através de análise de elementos finitos e de validação experimental, com recurso a um protótipo à escala. O algoritmo de otimização usado é uma metaheurística, inspirado no comportamento de grupos de animais. Algoritmos Particle Swarm são sugeridos com sucesso para problemas de otimização semelhantes. A otimização focou-se na espessura de cada laminado, para diferentes orientações. A rotina de otimização resultou na definição de uma solução quase-ótima para os laminados analisados e permitiu a redução do peso da peça em 43% relativamente à solução atual, bem como um aumento de 25% na aceleração máxima permitida, o que se reflete na produtividade da máquina, enquanto a mesma exatidão é garantida. A comparação entre os resultados numéricos e experimentais para os protótipos mostra uma boa concordância, com divergências pontuais, mas que ainda assim resultam na validação do modelo de elementos finitos no qual se baseia a otimização.Laser cutting is a highly flexible process with numerous advantages over competing technologies. These have ensured the growth of its market, totalling 4300 million United States dollars in 2020. Being used in many industries, the current trends are focused on reduced lead time, increased quality standards and competitive costs, while ensuring accuracy. Composite materials (namely fibre reinforced polymers) present attractive mechanical properties that poses them as advantageous for several applications, including the matter of this thesis: industrial machine components. The use of these materials leads to machines with higher efficiency, dimensional accuracy, surface quality, energy efficiency, and environmental impact. The main goal of this work is to increase the productivity of a laser cutting machine through the redesign of a critical component (gantry), also key for the overall machine accuracy. Beyond that, it is intended that this work lays out a methodology capable of assisting in the redesign of other machine critical components. As the problem leads with two opposing objectives (reducing weight and increasing stiffness), and with many variables, the implementation of an optimization routine is a central aspect of the present work. It is of major importance that the proposed optimization method leads to reliable results, demonstrated in this work by a finite element analysis and through experimental validation, by means of a scale prototype. The optimization algorithm selected is a metaheuristic inspired by the behaviour of swarms of animals. Particle swarm algorithms are proven to provide good and fast results in similar optimization problems. The optimization was performed focusing on the thickness of each laminate and on the orientations present in these. The optimization routine resulted in a definition of a near-optimal solution for the laminates analysed and allowed a weight reduction of 43% regarding the current solution, as well as an increase of 25% in the maximum allowed acceleration, which reflects on the productivity of the machine, while ensuring the same accuracy. The comparison between numeric and experimental testing of the prototypes shows a good agreement, with punctual divergences, but that still validates the Finite elements upon which the optimization process is supported.Portuguese Foundation for Science and Technology - SFRH/BD/51106/2010
    corecore