288,805 research outputs found

    Application of reduced-set pareto-lipschitzian optimization to truss optimization

    Get PDF
    In this paper, a recently proposed global Lipschitz optimization algorithm Pareto-Lipschitzian Optimization with Reduced-set (PLOR) is further developed, investigated and applied to truss optimization problems. Partition patterns of the PLOR algorithm are similar to those of DIviding RECTangles (DIRECT), which was widely applied to different real-life problems. However here a set of all Lipschitz constants is reduced to just two: the maximal and the minimal ones. In such a way the PLOR approach is independent of any user-defined parameters and balances equally local and global search during the optimization process. An expanded list of other well-known DIRECT-type algorithms is used in investigation and experimental comparison using the standard test problems and truss optimization problems. The experimental investigation shows that the PLOR algorithm gives very competitive results to other DIRECT-type algorithms using standard test problems and performs pretty well on real truss optimization problems

    Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants

    Get PDF
    In this paper, the global optimization problem minā”yāˆˆSF(y)\min_{y\in S} F(y) with SS being a hyperinterval in ā„œN\Re^N and F(y)F(y) satisfying the Lipschitz condition with an unknown Lipschitz constant is considered. It is supposed that the function F(y)F(y) can be multiextremal, non-differentiable, and given as a `black-box'. To attack the problem, a new global optimization algorithm based on the following two ideas is proposed and studied both theoretically and numerically. First, the new algorithm uses numerical approximations to space-filling curves to reduce the original Lipschitz multi-dimensional problem to a univariate one satisfying the H\"{o}lder condition. Second, the algorithm at each iteration applies a new geometric technique working with a number of possible H\"{o}lder constants chosen from a set of values varying from zero to infinity showing so that ideas introduced in a popular DIRECT method can be used in the H\"{o}lder global optimization. Convergence conditions of the resulting deterministic global optimization method are established. Numerical experiments carried out on several hundreds of test functions show quite a promising performance of the new algorithm in comparison with its direct competitors.Comment: 26 pages, 10 figures, 4 table

    Effective and efficient algorithm for multiobjective optimization of hydrologic models

    Get PDF
    Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity

    A search algorithm for a class of optimal finite-precision controller realization problems with saddle points

    No full text
    With game theory, we review the optimal digital controller realization problems that maximize a finite word length (FWL) closed-loop stability measure. For a large class of these optimal FWL controller realization problems which have saddle points, a minimax-based search algorithm is derived for finding a global optimal solution. The algorithm consists of two stages. In the first stage, the closed form of a transformation set is constructed which contains global optimal solutions. In the second stage, a subgradient approach searches this transformation set to obtain a global optimal solution. This algorithm does not suffer from the usual drawbacks associated with using direct numerical optimization methods to tackle these FWL realization problems. Furthermore, for a small class of optimal FWL controller realization problems which have no saddle point, the proposed algorithm also provides useful information to help solve them

    A Study in function optimization with the breeder genetic algorithm

    Get PDF
    Optimization is concerned with the finding of global optima (hence the name) of problems that can be cast in the form of a function of several variables and constraints thereof. Among the searching methods, {em Evolutionary Algorithms} have been shown to be adaptable and general tools that have often outperformed traditional {em ad hoc} methods. The {em Breeder Genetic Algorithm} (BGA) combines a direct representation with a nice conceptual simplicity. This work contains a general description of the algorithm and a detailed study on a collection of function optimization tasks. The results show that the BGA is a powerful and reliable searching algorithm. The main discussion concerns the choice of genetic operators and their parameters, among which the family of Extended Intermediate Recombination (EIR) is shown to stand out. In addition, a simple method to dynamically adjust the operator is outlined and found to greatly improve on the already excellent overall performance of the algorithm.Postprint (published version

    Deterministic Parallel Global Parameter Estimation for a Model of the Budding Yeast Cell Cycle

    Get PDF
    Two parallel deterministic direct search algorithms are used to find improved parameters for a system of differential equations designed to simulate the cell cycle of budding yeast. Comparing the model simulation results to experimental data is difficult because most of the experimental data is qualitative rather than quantitative. An algorithm to convert simulation results to mutant phenotypes is presented. Vectors of parameters defining the differential equation model are rated by a discontinuous objective function. Parallel results on a 2200 processor supercomputer are presented for a global optimization algorithm, DIRECT, a local optimization algorithm, MADS, and a hybrid of the two

    A fully Distributed Parallel Global Search Algorithm

    Get PDF
    The n-dimensional direct search algorithm DIRECT of Jones,Perttunen, and Stuckman has attracted recent attention from the multidisciplinary design optimization community. Since DIRECT only requires function values (or ranking)and balances global exploration with local refinement better than n-dimensional bisection, it is well suited to the noisy function values typical of realistic simulations. While not efficient for high accuracy optimization, DIRECT is appropriate for the sort of global design space exploration done in large scale engineering design. Direct and pattern search schemes have the potential to exploit massive parallelism, but efficient use of massively parallel machines is nontrivial to achieve. This paper presents a fully distribute control version of DIRECT that is designed for massively parallel (distribute memory architectures. Parallel results are presented for a multidisciplinary design optimization problem ā€” configuration design of a high speed civil transport
    • ā€¦
    corecore