387 research outputs found

    Direct estimation of kinetic parametric images for dynamic PET.

    Get PDF
    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed

    Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks

    Get PDF
    Purpose: This study proposed and investigated the feasibility of estimating Patlak-derived influx rate constant (Ki) from standardized uptake value (SUV) and/or dynamic PET image series. Methods: Whole-body 18F-FDG dynamic PET images of 19 subjects consisting of 13 frames or passes were employed for training a residual deep learning model with SUV and/or dynamic series as input and Ki-Patlak (slope) images as output. The training and evaluation were performed using a nine-fold cross-validation scheme. Owing to the availability of SUV images acquired 60 min post-injection (20 min total acquisition time), the data sets used for the training of the models were split into two groups: “With SUV” and “Without SUV.” For “With SUV” group, the model was first trained using only SUV images and then the passes (starting from pass 13, the last pass, to pass 9) were added to the training of the model (one pass each time). For this group, 6 models were developed with input data consisting of SUV, SUV plus pass 13, SUV plus passes 13 and 12, SUV plus passes 13 to 11, SUV plus passes 13 to 10, and SUV plus passes 13 to 9. For the “Without SUV” group, the same trend was followed, but without using the SUV images (5 models were developed with input data of passes 13 to 9). For model performance evaluation, the mean absolute error (MAE), mean error (ME), mean relative absolute error (MRAE%), relative error (RE%), mean squared error (MSE), root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) were calculated between the predicted Ki-Patlak images by the two groups and the reference Ki-Patlak images generated through Patlak analysis using the whole acquired data sets. For specific evaluation of the method, regions of interest (ROIs) were drawn on representative organs, including the lung, liver, brain, and heart and around the identified malignant lesions. Results: The MRAE%, RE%, PSNR, and SSIM indices across all patients were estimated as 7.45 ± 0.94%, 4.54 ± 2.93%, 46.89 ± 2.93, and 1.00 ± 6.7 × 10−7, respectively, for models predicted using SUV plus passes 13 to 9 as input. The predicted parameters using passes 13 to 11 as input exhibited almost similar results compared to the predicted models using SUV plus passes 13 to 9 as input. Yet, the bias was continuously reduced by adding passes until pass 11, after which the magnitude of error reduction was negligible. Hence, the predicted model with SUV plus passes 13 to 9 had the lowest quantification bias. Lesions invisible in one or both of SUV and Ki-Patlak images appeared similarly through visual inspection in the predicted images with tolerable bias. Conclusion: This study concluded the feasibility of direct deep learning-based approach to estimate Ki-Patlak parametric maps without requiring the input function and with a fewer number of passes. This would lead to shorter acquisition times for WB dynamic imaging with acceptable bias and comparable lesion detectability performance.</p

    Short 2-[18F]Fluoro-2-Deoxy-D-Glucose PET Dynamic Acquisition Protocol to Evaluate the Influx Rate Constant by Regional Patlak Graphical Analysis in Patients With Non-Small-Cell Lung Cancer

    Get PDF
    Purpose: To test a short 2-[18F]Fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET dynamic acquisition protocol to calculate Ki using regional Patlak graphical analysis in patients with non-small-cell lung cancer (NSCLC). Methods: 24 patients with NSCLC who underwent standard dynamic 2-[18F]FDG acquisitions (60 min) were randomly divided into two groups. In group 1 (n = 10), a population-based image-derived input function (pIDIF) was built using a monoexponential trend (10–60 min), and a leave-one-out cross-validation (LOOCV) method was performed to validate the pIDIF model. In group 2 (n = 14), Ki was obtained by standard regional Patlak plot analysis using IDIF (0–60 min) and tissue response (10–60 min) curves from the volume of interests (VOIs) placed on descending thoracic aorta and tumor tissue, respectively. Moreover, with our method, the Patlak analysis was performed to obtain Ki,s using IDIFFitted curve obtained from PET counts (0–10 min) followed by monoexponential coefficients of pIDIF (10–60 min) and tissue response curve obtained from PET counts at 10 min and between 40 and 60 min, simulating two short dynamic acquisitions. Both IDIF and IDIFFitted curves were modeled to assume the value of 2-[18F]FDG plasma activity measured in the venous blood sampling performed at 45 min in each patient. Spearman's rank correlation, coefficient of determination, and Passing–Bablok regression were used for the comparison between Ki and Ki,s. Finally, Ki,s was obtained with our method in a separate group of patients (group 3, n = 8) that perform two short dynamic acquisitions. Results: Population-based image-derived input function (10–60 min) was modeled with a monoexponential curve with the following fitted parameters obtained in group 1: a = 9.684, b = 16.410, and c = 0.068 min−1. The LOOCV error was 0.4%. In patients of group 2, the mean values of Ki and Ki,s were 0.0442 ± 0.0302 and 0.33 ± 0.0298, respectively (R2 = 0.9970). The Passing–Bablok regression for comparison between Ki and Ki,s showed a slope of 0.992 (95% CI: 0.94–1.06) and intercept value of −0.0003 (95% CI: −0.0033–0.0011). Conclusions: Despite several practical limitations, like the need to position the patient twice and to perform two CT scans, our method contemplates two short 2-[18F]FDG dynamic acquisitions, a population-based input function model, and a late venous blood sample to obtain robust and personalized input function and tissue response curves and to provide reliable regional Ki estimation

    Methodological considerations in quantification of oncological FDG PET studies

    Get PDF
    Contains fulltext : 87741.pdf (publisher's version ) (Closed access) Contains fulltext : 87741-1.pdf (postprint version ) (Open Access)PURPOSE: This review aims to provide insight into the factors that influence quantification of glucose metabolism by FDG PET images in oncology as well as their influence on repeated measures studies (i.e. treatment response assessment), offering improved understanding both for clinical practice and research. METHODS: Structural PubMed searches have been performed for the many factors affecting quantification of glucose metabolism by FDG PET. Review articles and references lists have been used to supplement the search findings. RESULTS: Biological factors such as fasting blood glucose level, FDG uptake period, FDG distribution and clearance, patient motion (breathing) and patient discomfort (stress) all influence quantification. Acquisition parameters should be adjusted to maximize the signal to noise ratio without exposing the patient to a higher than strictly necessary radiation dose. This is especially challenging in pharmacokinetic analysis, where the temporal resolution is of significant importance. The literature is reviewed on the influence of attenuation correction on parameters for glucose metabolism, the effect of motion, metal artefacts and contrast agents on quantification of CT attenuation-corrected images. Reconstruction settings (analytical versus iterative reconstruction, post-reconstruction filtering and image matrix size) all potentially influence quantification due to artefacts, noise levels and lesion size dependency. Many region of interest definitions are available, but increased complexity does not necessarily result in improved performance. Different methods for the quantification of the tissue of interest can introduce systematic and random inaccuracy. CONCLUSIONS: This review provides an up-to-date overview of the many factors that influence quantification of glucose metabolism by FDG PET.01 juli 201

    Feasibility of using abbreviated scan protocols with population-based input functions for accurate kinetic modeling of [18F]-FDG datasets from a long axial FOV PET scanner.

    Get PDF
    BACKGROUND Accurate kinetic modeling of 18F-fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [18F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [18F]-FDG total body kinetic modeling. METHODS Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [18F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35-65, 40-65, 45-65, 50-65, and 55-65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak Ki estimates in tumor lesions and cerebral gray matter. Patlak plot start time (t*) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak Ki estimates. Patlak Ki estimates with IDIF and t* = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed. RESULTS There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P > 0.05). Excellent agreement was shown between Patlak Ki estimates obtained using sPBIF and IDIF. Using the sPBIF55-65 with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved  0.99 and peak signal-to-noise ratio > 55 dB. CONCLUSION We demonstrate the feasibility of performing accurate [18F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner

    Kinetics of protein-based in vivo Imaging tracers for positron emission tomography

    Get PDF
    Within the framework of the “Sel-tag imaging project”, a novel method was used to rapidly label protein tracers and the in vivo targeting abilities of these tracers were studied in animal models of cancer using a preclinical positron emission tomography (PET) camera. To first evaluate and optimize preclinically the use of PET tracers can facilitate their translation to and implementation in human patient studies. The ultimate goal of the different projects within the Sel-tag imaging project was to find imaging biomarkers that could potentially be used for individualizing cancer treatment and thereby improve the therapeutic results. This thesis focuses on methods employed to describe the distribution of these protein-based tracers in human xenografts. Many of the techniques used had been developed for other imaging circumstances. Therefore verification for these imaging applications was an important aspect of these papers. Paper I examined the distribution in a tumour of a medium-sized AnnexinA5-based tracer that targeted phosphatidylserine externalised during cell death in tumours in two cases; first, with no pre-treatment (baseline) and, second, after pre-treatment with a chemotherapeutic agent. Small differences between tracer uptakes in the two cases required a macro parameter analysis method for quantifications. Evaluations of the influence of the enhanced permeability and retention effect by using a size-matched control were introduced. The AnnexinA5 results were compared to those of the metabolic tracer [18F]FDG and complemented with circulating serum markers to increase sensitivity. Paper II extended the analysis in paper I to incorporate more verifications that were also more thorough. The choice of input (blood or reference tissue) and the statistical significance of intergroup comparisons when using conventional uptake measurements and the more involved macro parameter analyses like in paper I were compared. We also proposed that distribution volume ratio was a more appropriate quantification parameter concept for these protein-based tracers with relatively large non-specific uptake. Paper III assessed the smaller Affibody™ tracer ZHER2:342 as an imaging biomarker for human epidermal growth factor 2 (HER2), whose overexpressions are associated with a poor prognosis for breast cancer patients. In order to demonstrate specific binding to HER2, pre-treatment of the tumour with unlabelled protein and uptake in xenografts with low HER2 expression was evaluated. Ex vivo immunohistochemistry of expression levels supported the imaging results. Paper IV examined a radiopharmaceutical that targeted the epidermal growth factor receptor (EGFR), whose overexposure in tumours is associated with a negative prognosis. Again an Affibody™ molecule, (ZEGFR:2377), was used and, as in in paper I, a size-matched control was also used to estimate the non-specific uptake. Uptakes, quantified by conventional uptake methods, varied in tumours with different EGFR expression levels. Ex vivo analyses of expression levels were also performed. Paper V addressed the non-uniform (heterogeneous) uptake of different tracers in a tumour tissue. An algorithm was written that aimed at incorporating all relevant aspects that will influence non-uniformity. Histograms were generated that visualized how the frequency and spread of deviations contributed to the heterogeneity. These aspects could not always be attended in a direct manner, but instead had to be handled in an indirect way. The effect of varying imaging parameters was examined as part of the validation procedure. The method developed is a robust, user-friendly tool for comparing heterogeneity in similar volume preclinical tumor tissues
    corecore