2,279 research outputs found

    An Infinitesimal Probabilistic Model for Principal Component Analysis of Manifold Valued Data

    Full text link
    We provide a probabilistic and infinitesimal view of how the principal component analysis procedure (PCA) can be generalized to analysis of nonlinear manifold valued data. Starting with the probabilistic PCA interpretation of the Euclidean PCA procedure, we show how PCA can be generalized to manifolds in an intrinsic way that does not resort to linearization of the data space. The underlying probability model is constructed by mapping a Euclidean stochastic process to the manifold using stochastic development of Euclidean semimartingales. The construction uses a connection and bundles of covariant tensors to allow global transport of principal eigenvectors, and the model is thereby an example of how principal fiber bundles can be used to handle the lack of global coordinate system and orientations that characterizes manifold valued statistics. We show how curvature implies non-integrability of the equivalent of Euclidean principal subspaces, and how the stochastic flows provide an alternative to explicit construction of such subspaces. We describe estimation procedures for inference of parameters and prediction of principal components, and we give examples of properties of the model on embedded surfaces

    Building connectomes using diffusion MRI: why, how and but

    Get PDF
    Why has diffusion MRI become a principal modality for mapping connectomes in vivo? How do different image acquisition parameters, fiber tracking algorithms and other methodological choices affect connectome estimation? What are the main factors that dictate the success and failure of connectome reconstruction? These are some of the key questions that we aim to address in this review. We provide an overview of the key methods that can be used to estimate the nodes and edges of macroscale connectomes, and we discuss open problems and inherent limitations. We argue that diffusion MRI-based connectome mapping methods are still in their infancy and caution against blind application of deep white matter tractography due to the challenges inherent to connectome reconstruction. We review a number of studies that provide evidence of useful microstructural and network properties that can be extracted in various independent and biologically-relevant contexts. Finally, we highlight some of the key deficiencies of current macroscale connectome mapping methodologies and motivate future developments

    Diffusion MRI tractography for oncological neurosurgery planning:Clinical research prototype

    Get PDF

    Tractographie de la matière blanche par réseaux de neurones récurrents

    Get PDF
    La matière blanche du cerveau fait encore l'objet de nombreuses études. Grâce à l'IRM de diffusion, on peut étudier de façon non invasive la connectivité du cerveau avec une précision sans précédent. La reconstruction de la matière blanche --- la tractographie --- n'est pas parfaite cependant. En effet, la tractographie tend à reconstruire tous les chemins possibles au sein de la matière blanche; l'expertise des neuroanatomistes est donc requise pour distinguer les chemins qui sont possibles anatomiquement de ceux qui résultent d'une mauvaise reconstruction. Cette connaissance est difficile à exprimer et à codifier sous forme de règles logiques. L'intelligence artificielle a refait surface dans les années 1990 --- suite à une amélioration remarquable de la vitesse des processeurs --- en tant que solution viable à plusieurs problèmes qui étaient considérés comme fondamentalement > et quasi impossibles à résoudre pour une machine. Celle-ci représente un outil unique pour intégrer l'expertise des neuroanatomistes dans le processus de reconstruction de la matière blanche, sans avoir à fournir de règles explicitement. Un modèle peut ainsi apprendre la définition d'un chemin valide à partir d'exemples valides, pour ensuite reproduire ce qu'il a appris, sans répéter les erreurs classiques. Plus particulièrement, les réseaux de neurones récurrents sont une famille de modèles créés spécifiquement pour le traitement de séquences de données. Comme une fibre de matière blanche est représentée par une séquence de points, le lien se fait naturellement. Malgré leur potentiel énorme, l'application des réseaux récurrents à la tractographie fait face à plusieurs problèmes techniques. Cette thèse se veut très exploratoire, et détaille donc les débuts de l'utilisation des réseaux de neurones récurrents pour la tractographie par apprentissage, des problèmes qui sont apparus suite à la création d'une multitude d'algorithmes basés sur l'intelligence artificielle, ainsi que des solutions développées pour répondre à ces problèmes. Les résultats de cette thèse ont démontré le potentiel des réseaux de neurones récurrents pour la reconstruction de la matière blanche, en plus de contribuer à l’avancement du domaine grâce à la création d’une base de données publique pour la tractographie par apprentissage
    corecore