293 research outputs found

    Reordering the eigenvalues of a periodic matrix pair with applications in control

    Get PDF
    Reordering the eigenvalues of a periodic matrix pair is a computational task that arises from various applications related to discrete-time periodic descriptor systems, such as pole placement or linear-quadratic optimal control. However, it is also implicitly present in recently developed robust control methods for linear time-invariant systems. In this contribution, a direct algorithm for performing this task based on the solution of a periodic generalized Sylvester equation is proposed. The new approach is numerically backward stable and it is demonstrated that the resulting deflating subspaces can be much more accurate than those computed by collapsing methods

    A periodic Krylov-Schur algorithm for large matrix products

    Get PDF
    Stewart's recently introduced Krylov-Schur algorithm is a modification of the implicitly restarted Arnoldi algorithm which employs reordered Schur decompositions to perform restarts and deflations in a numerically reliable manner. This paper describes a variant of the Krylov-Schur algorithm suitable for addressing eigenvalue problems associated with products of large and sparse matrices. It performs restarts and deflations via reordered periodic Schur decompositions and, by taking the product structure into account, it is capable of achieving qualitatively better approximations to eigenvalues of small magnitude

    Some numerical challenges in control theory

    Get PDF
    We discuss a number of novel issues in the interdisciplinary area of numerical linear algebra and control theory. Although we do not claim to be exhaustive we give a number of problems which we believe will play an important role in the near future. These are: sparse matrices, structured matrices, novel matrix decompositions and numerical shortcuts. Each of those is presented in relation to a particular (class of) control problems. These are respectively: large scale control systems, polynomial system models, control of periodic systems, and normalized coprime factorizations in robust control

    On large-scale diagonalization techniques for the Anderson model of localization

    Get PDF
    We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques in the implicitly restarted Lanczos method and in the Jacobi–Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude

    Nonsingular systems of generalized Sylvester equations: An algorithmic approach

    Get PDF
    We consider the uniqueness of solution (i.e., nonsingularity) of systems of r generalized Sylvester and ⋆-Sylvester equations with n×n coefficients. After several reductions, we show that it is sufficient to analyze periodic systems having, at most, one generalized ⋆-Sylvester equation. We provide characterizations for the nonsingularity in terms of spectral properties of either matrix pencils or formal matrix products, both constructed from the coefficients of the system. The proposed approach uses the periodic Schur decomposition and leads to a backward stable O(n3r) algorithm for computing the (unique) solution

    Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II

    Get PDF
    This article describes Fortran 77 subroutines for computing eigenvalues and invariant subspaces of Hamiltonian and skew-Hamiltonian matrices. The implemented algorithms are based on orthogonal symplectic decompositions, implying numerical backward stability as well as symmetry preservation for the computed eigenvalues. These algorithms are supplemented with balancing and block algorithms which can lead to considerable accuracy and performance improvements. As a by-product, an efficient implementation for computing symplectic QR decompositions is provided. We demonstrate the usefulness of the subroutines for several, practically relevant examples
    corecore