376 research outputs found

    Optimal cosine modulated nonuniform linear phase FIR filter bank design via stretching and shifting frequency response of prototype filter

    Get PDF
    This paper proposes an optimal cosine modulated nonuniform linear phase finite impulse response (FIR) filter bank design. The frequency responses of all the analysis filters and the synthesis filters of the filter bank are derived based on both stretching and shifting the frequency response of the prototype filter. The total aliasing error of the filter bank is minimized subject to a specification on the maximum amplitude distortion of the filter bank as well as specifications on both the maximum passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter. This filter bank design problem is actually a functional inequality constrained optimization problem. Our recently developed integration approach is employed for solving the problem. Computer numerical simulation results show that our proposed design method outperforms existing design methods

    Theory and design of a class of cosine-modulated non-uniform filter banks

    Get PDF
    In this paper, the theory and design of a class of PR cosine-modulated nonuniform filter bank is proposed. It is based on a structure previously proposed by Cox, where the outputs of a uniform filter bank is combined or merged by means of the synthesis section of another filter bank with smaller channel number. Simplifications are imposed on this structure so that the design procedure can be considerably simplified. Due to the use of CMFB as the original and recombination filter banks, excellent filter quality and low design and implementation complexities can be achieved. Problems with these merging techniques such as spectrum inversion, equivalent filter representations and protrusion cancellation are also addressed. As the merging is performed after the decimation, the arithmetic complexity is lower than other conventional approaches. Design examples show that PR nonuniform filter banks with high stopband attenuation and low design and implementation complexities can be obtained by the proposed method.published_or_final_versio

    On the theory and design of a class of PR uniform and recombination nonuniform causal-Stable IIR cosine modulated filter banks

    Get PDF
    This paper studies the theory and design of a class of perfect reconstruction (PR) uniform causal-stable infinite-impulse response (IIR) cosine modulated filter banks (CMFBs). The design approach is also applicable to the design of PR recombination nonuniform (RN) IIR CMFBs. The polyphase components of the prototype filters of these IIR CMFBs are assumed to have the same denominator so as to simplify the PR condition. In designing the proposed IIR CMFB, a PR FIR CMFB with similar specifications is first designed. The finite-impulse response prototype filter is then converted to a nearly PR (NPR) IIR CMFB using a modified model reduction technique. The NPR IIR CMFB so obtained has a reasonably low reconstruction error. Its denominator is designed to be a polynomial in z M, where M is the number of channels, to simplify the PR condition. Finally, it is employed as the initial guess to constrained nonlinear optimization software for the design of the PR IIR CMFB. Design results show that both NPR and PR IIR CMFBs with good frequency characteristics and different system delays can be obtained by the proposed method. By using these IIR CMFBs in the RN CMFBs, new RN NPR and PR IIR CMFBs can be obtained similarly. © 2008 IEEE.published_or_final_versio

    Design of low-delay nonuniform pseudo QMF banks

    Get PDF
    Journal ArticleABSTRACT This paper presents a method for designing low-delay nonuniform pseudo QMF banks. The method is motivated by the work of Li, Nguyen and Tantaratana, in which the nonuniform filter bank is realized by combining an appropriate number of adjacent subbands of a uniform pseudo QMF filter bank. In prior work, the prototype filter of the uniform pseudo QMF is constrained to have linear phase and the overall delay associated with the filter bank was often unacceptably large for filter banks with a large number of subbands. By relaxing the linear phase constraints, this paper proposes a pseudo QMF filter bank design technique that significantly reduces the delay. An example that experimentally verifies the capabilities of the design technique is presented

    A New Design Algorithm for Two-Band Orthonormal Rational Filter Banks and Orthonormal Rational Wavelets

    Get PDF
    In this paper, we present a new algorithm for the design of orthonormal two-band rational filter banks. Owing to the connection between iterated rational filter banks and rational wavelets, this is also a design algorithm for orthonormal rational wavelets. It is basically a simple iterative procedure, which explains its exponential convergence and adaptability under various linear constraints (e.g., regularity). Although the filters obtained from this algorithm are suboptimally designed, they show excellent frequency selectivity. After an in-depth account of the algorithm, we discuss the properties of the rational wavelets generated by some designed filters. In particular, we stress the possibility to design "almost" shift error-free wavelets, which allows the implementation of a rational wavelet transform

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed

    Generic Feasibility of Perfect Reconstruction with Short FIR Filters in Multi-channel Systems

    Full text link
    We study the feasibility of short finite impulse response (FIR) synthesis for perfect reconstruction (PR) in generic FIR filter banks. Among all PR synthesis banks, we focus on the one with the minimum filter length. For filter banks with oversampling factors of at least two, we provide prescriptions for the shortest filter length of the synthesis bank that would guarantee PR almost surely. The prescribed length is as short or shorter than the analysis filters and has an approximate inverse relationship with the oversampling factor. Our results are in form of necessary and sufficient statements that hold generically, hence only fail for elaborately-designed nongeneric examples. We provide extensive numerical verification of the theoretical results and demonstrate that the gap between the derived filter length prescriptions and the true minimum is small. The results have potential applications in synthesis FB design problems, where the analysis bank is given, and for analysis of fundamental limitations in blind signals reconstruction from data collected by unknown subsampled multi-channel systems.Comment: Manuscript submitted to IEEE Transactions on Signal Processin

    A System Approach to the Design of Multirate Filter Banks.

    Get PDF
    This dissertation studies the design of multirate filter banks by adopting a so-called system approach. The design issue of Johnston\u27s method is first investigated in which an explicit expression of the reconstruction error is derived using Lyapunov stability theory, and new convergent iterative algorithms are proposed through non-linear optimization. The results are extended to the two-dimensional filter banks. The design issue of more general multirate filter banks is also investigated through model matching method. Using standard results from modern control theory, new design algorithms are developed which minimize the reconstruction error while completely eliminating the aliasing error. State-space realizations, inner-outer factorizations, and optimal Hankel norm approximation are used to reduce the complexity of computation and improve the accuracy of the proposed design algorithms
    corecore