2,761 research outputs found

    A simple model of trees for unicellular maps

    Get PDF
    We consider unicellular maps, or polygon gluings, of fixed genus. A few years ago the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that explicitly describes the "recursive part" of the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, the Lehman-Walsh formula and the Goupil-Schaeffer formula. We also discuss several applications of our construction: we obtain a new proof of an identity related to covered maps due to Bernardi and the first author, and thanks to previous work of the second author, we give a new expression for Stanley character polynomials, which evaluate irreducible characters of the symmetric group. Finally, we show that our techniques apply partially to unicellular 3-constellations and to related objects that we call quasi-constellations.Comment: v5: minor revision after reviewers comments, 33 pages, added a refinement by degree of the Harer-Zagier formula and more details in some proof

    Jack polynomials and some identities for partitions

    Full text link
    We prove an identity about partitions involving new combinatorial coefficients. The proof given is using a generating function. As an application we obtain the explicit expression of two shifted symmetric functions, related with Jack polynomials. These quantities are the moments of the "alpha-content" random variable with respect to some transition probability distributions.Comment: 22 pages, LaTeX, to appear in Trans. Amer. Math. So

    Bijective enumeration of some colored permutations given by the product of two long cycles

    Get PDF
    Let Îłn\gamma_n be the permutation on nn symbols defined by $\gamma_n = (1\ 2\...\ n).Weareinterestedinanenumerativeproblemoncoloredpermutations,thatispermutations. We are interested in an enumerative problem on colored permutations, that is permutations \betaof of ninwhichthenumbersfrom1to in which the numbers from 1 to narecoloredwith are colored with pcolorssuchthattwoelementsinasamecyclehavethesamecolor.Weshowthattheproportionofcoloredpermutationssuchthat colors such that two elements in a same cycle have the same color. We show that the proportion of colored permutations such that \gamma_n \beta^{-1}isalongcycleisgivenbytheverysimpleratio is a long cycle is given by the very simple ratio \frac{1}{n- p+1}.Ourproofisbijectiveandusescombinatorialobjectssuchaspartitionedhypermapsandthorntrees.Thisformulaisactuallyequivalenttotheproportionalityofthenumberoflongcycles. Our proof is bijective and uses combinatorial objects such as partitioned hypermaps and thorn trees. This formula is actually equivalent to the proportionality of the number of long cycles \alphasuchthat such that \gamma_n\alphahas has mcyclesandStirlingnumbersofsize cycles and Stirling numbers of size n+1$, an unexpected connection previously found by several authors by means of algebraic methods. Moreover, our bijection allows us to refine the latter result with the cycle type of the permutations.Comment: 22 pages. Version 1 is a short version of 12 pages, entitled "Linear coefficients of Kerov's polynomials: bijective proof and refinement of Zagier's result", published in DMTCS proceedings of FPSAC 2010, AN, 713-72

    Simple recurrence formulas to count maps on orientable surfaces

    Full text link
    We establish a simple recurrence formula for the number QgnQ_g^n of rooted orientable maps counted by edges and genus. We also give a weighted variant for the generating polynomial Qgn(x)Q_g^n(x) where xx is a parameter taking the number of faces of the map into account, or equivalently a simple recurrence formula for the refined numbers Mgi,jM_g^{i,j} that count maps by genus, vertices, and faces. These formulas give by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large gg. In the very particular case of one-face maps, we recover the Harer-Zagier recurrence formula. Our main formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It is similar in look to the one discovered by Goulden and Jackson for triangulations, and indeed our method to go from the KP equation to the recurrence formula can be seen as a combinatorial simplification of Goulden and Jackson's approach (together with one additional combinatorial trick). All these formulas have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved.Comment: Version 3: We changed the title once again. We also corrected some misprints, gave another equivalent formulation of the main result in terms of vertices and faces (Thm. 5), and added complements on bivariate generating functions. Version 2: We extended the main result to include the ability to track the number of faces. The title of the paper has been changed accordingl
    • …
    corecore