549 research outputs found

    New developments in mathematical control and information for fuzzy systems

    Get PDF
    Hamid Reza Karimi, Mohammed Chadli and Peng Sh

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Development and evaluation of methods for control and modelling of multiple-input multiple-output systems

    Get PDF
    In control, a common type of system is the multiple-input multiple-output (MIMO) system, where the same input may affect multiple outputs, or conversely, the same output is affected by multiple inputs. In this thesis two methods for controlling MIMO systems are examined, namely linear quadratic Gaussian (LQG) control and decentralized control, and some of the difficulties associated with them.One difficulty when implementing decentralized control is to decide which inputs should control which outputs, also called the input-output pairing problem. There are multiple ways to solve this problem, among them using gramian based measures, which include the Hankel interaction index array, the participation matrix and the Σ2 method.\ua0 These methods take into account system dynamics as opposed to many other methods which only consider the steady-state system. However, the gramian based methods have issues with input and output scaling. Generally, this is handled by scaling all inputs and outputs to have equal range. However, in this thesis it is demonstrated how this can cause an incorrect pairing. Furthermore, this thesis examines other methods of scaling the gramian based measures, using either row or column sums, or by utilizing the Sinkhorn-Knopp algorithm. It is shown that there are considerable benefits to be gained from the alternative scaling of the gramian based measures, especially when using the Sinkhorn-Knopp algorithm. The use of this method also has the advantage that the results are completely independent of the original scaling of the inputs and outputs.An expansion to the decentralized control structure is the sparse control, in which a decentralized controller is expanded to include feed-forward or MIMO blocks. In this thesis we explore how to best use the gramian based measures to find sparse control structures, and propose a method which demonstrates considerable improvement compared to existing methods of sparse control structure design.A prerequisite to implementing control configuration methods is an understanding of the processes in question. In this thesis we examine the pulp refining process and design both static and dynamic models for pulp and paper properties such as shives width, fiber length and tensile index, and various available inputs. We demonstrate that utilizing internal variables (primarily consistencies) estimated from temperature measurements yields improved results compared to using solely measured variables. The measurement data from the refiners is noisy, sometimes sparse and generally irregularly sampled. This thesis discusses the challenges posed by these constraints and how they can be resolved.\ua0\ua0 An alternative way to control a MIMO system is to implement an LQG controller, which yields a single control structure for the entire system using a state based controller. It has been proposed that LQG control can be an effective control scheme to be used on networked control systems with wireless channels. These channels have a tendency to be unreliable with packet delays and packet losses. This thesis examines how to implement an LQG controller over such unreliable communication channels, and derives the optimal controller minimizing the cost function expressed in actuated controls.When new methods of control system design and analysis are introduced in the control engineering field, it is important to compare the new results with existing methods. Often this requires application of the methods on examples, and for this purpose benchmark processes are introduced. However, in many areas of control engineering research the number of examples are relatively few, in particular when MIMO systems are considered. For a thorough assessment of a method, however, as large number of relevant models as possible should be used. As a remedy, a framework has been developed for generating linear MIMO models based on predefined system properties, such as model type, size, stability, time constants, delays etc. This MIMO generator, which is presented in this thesis, is demonstrated by using it to evaluate the previously described scaling methods for the gramian based pairing methods

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    Adaptive Neural Network Fixed-Time Control Design for Bilateral Teleoperation With Time Delay.

    Get PDF
    In this article, subject to time-varying delay and uncertainties in dynamics, we propose a novel adaptive fixed-time control strategy for a class of nonlinear bilateral teleoperation systems. First, an adaptive control scheme is applied to estimate the upper bound of delay, which can resolve the predicament that delay has significant impacts on the stability of bilateral teleoperation systems. Then, radial basis function neural networks (RBFNNs) are utilized for estimating uncertainties in bilateral teleoperation systems, including dynamics, operator, and environmental models. Novel adaptation laws are introduced to address systems' uncertainties in the fixed-time convergence settings. Next, a novel adaptive fixed-time neural network control scheme is proposed. Based on the Lyapunov stability theory, the bilateral teleoperation systems are proved to be stable in fixed time. Finally, simulations and experiments are presented to verify the validity of the control algorithm

    A Survey of Decentralized Adaptive Control

    Get PDF

    Adaptive Control of Systems with Quantization and Time Delays

    Get PDF
    This thesis addresses problems relating to tracking control of nonlinear systems in the presence of quantization and time delays. Motivated by the importance in areas such as networked control systems (NCSs) and digital systems, where the use of a communication network in NCS introduces several constraints to the control system, such as the occurrence of quantization and time delays. Quantization and time delays are of both practical and theoretical importance, and the study of systems where these issues arises is thus of great importance. If the system also has parameters that vary or are uncertain, this will make the control problem more complicated. Adaptive control is one tool to handle such system uncertainty. In this thesis, adaptive backstepping control schemes are proposed to handle uncertainties in the system, and to reduce the effects of quantization. Different control problems are considered where quantization is introduced in the control loop, either at the input, the state or both the input and the state. The quantization introduces difficulties in the controller design and stability analysis due to the limited information and nonlinear characteristics, such as discontinuous phenomena. In the thesis, it is analytically shown how the choice of quantization level affects the tracking performance, and how the stability of the closed-loop system equilibrium can be achieved by choosing proper design parameters. In addition, a predictor feedback control scheme is proposed to compensate for a time delay in the system, where the inputs are quantized at the same time. Experiments on a 2-degrees of freedom (DOF) helicopter system demonstrate the different developed control schemes.publishedVersio
    • …
    corecore