71 research outputs found

    High-Efficiency Line Conditioners With Enhanced Performance for Operation With Non-Linear Loads

    Get PDF
    This paper presents the analysis, design, and experimental performance verification of a serial type line conditioner. Since it processes only a fraction of the load power, the overall converter losses tend to be lower and the efficiency of the conditioner higher. Regarding the dynamic performance, the line inductance, which results in a positive zero in the transfer function of the plant, is taken into consideration when designing a voltage controller with higher bandwidth for faster response. In addition, a virtual resistance is included in the control of the system to damp oscillations often seen for operations at light load and with nonlinear load conditions. Experimental results obtained with a 10 kVA prototype of a serial line conditioner fed from the load side and the proposed feedback control scheme are presented to demonstrate the superior performance of the line conditioner

    Low-voltage ride-through capability improvement of type-3 wind turbine through active disturbance rejection feedback control-based dynamic voltage restorer

    Get PDF
    Disconnections due to voltage drops in the grid cannot be permitted if wind turbines (WTs) contribute significantly to electricity production, as this increases the risk of production loss and destabilizes the grid. To mitigate the negative effects of these occurrences, WTs must be able to ride through the low-voltage conditions and inject reactive current to provide dynamic voltage support. This paper investigates the low-voltage ride-Through (LVRT) capability enhancement of a Type-3 WT utilizing a dynamic voltage restorer (DVR). During the grid voltage drop, the DVR quickly injects a compensating voltage to keep the stator voltage constant. This paper proposes an active disturbance rejection control (ADRC) scheme to control the rotor-side, grid-side and DVR-side converters in a wind-DVR integrated network. The performance of the Type-3 WT with DVR topology is evaluated under various test conditions using MATLAB®/Simulink®. These simulation results are also compared with the experimental results for the LVRT capability performed on a WT emulator equipped with a crowbar and direct current (DC) chopper. The simulation results demonstrate a favourable transient and steady-state response of the Type-3 wind turbine quantities defined by the LVRT codes, as well as improved reactive power support under balanced fault conditions. Under the most severe voltage drop of 95%, the stator currents, rotor currents and DC bus voltage are 1.25 pu, 1.40 pu and 1.09 UDC, respectively, conforming to the values of the LVRT codes. DVR controlled by the ADRC technique significantly increases the LVRT capabilities of a Type-3 doubly-fed induction generator-based WT under symmetrical voltage dip events. Although setting up ADRC controllers might be challenging, the proposed method has been shown to be extremely effective in reducing all kinds of internal and external disturbances

    Pengaruh adukan dan kepekatan partikel silicon karbida sebagai penguat terhadap kelakuan salutan komposit matriks nikel

    Get PDF
    Affordable quality housing is vital in developing countries to meet its growing population. Development of a new cost effective system is crucial to fulfill these demands. In view of this, a study is carried out to develope a Precast Lightweight Foamed Concrete Sandwich Panel (PLFP), as a new affordable building system. Experimental investigation and finite element analysis to study the structural behaviour of the PLFP panel under axial load is undertaken. The panel consists of two foamed concrete wythes and a polystyrene insulation layer in between the wythes. The wythes are reinforced with high tensile steel bars and tied up to each other through the polystyrene layer by steel shear connectors bent at an angle of 45º. The panels are loaded with axial load until failure. The ultimate load carrying capacity, load-lateral deflection profile, strain distributions, and the failure mode are recorded. Partial composite behaviour is observed in all specimens when the cracking load is achieved. Finite element analysis is also carried out to study the effect of slenderness ratio and shear connectors which are the major parameters that affect the strength and behaviour of the panels. An empirical equation to predict the maximum load carrying capacity of the panels is proposed. The PLFP system proposed in this research is able to achieve the intended strength for use in low rise building. Considering its lightweight and precast construction method, it is feasible to be developed further as a competitive IBS building system

    Voltage Sag And Swell Mitigation Using Grey Wolf Optimizer (Gwo) For A Single-Phase Grid-Connected Photovoltaic System

    Get PDF
    The most prominent power quality challenges affecting distribution networks are voltage sag and swell, especially in sectors where losses can be significant. The reason that the power quality issue must be resolved as soon as possible is that high power quality may save money and energy. Lower energy costs and reactive power pricing provide direct benefits to customers. Indirect savings are realized by avoiding situations such as equipment damage and premature aging, productivity loss, and data and work loss. The main objective of this research is to design a simple control strategy by using the Proportional Integral-Grey Wolf Optimizer (PI-GWO) to mitigate voltage sag and swell during weak grid conditions. The research presents a newly developed and efficient optimization technique called GWO for the first time to solve power quality disturbances in single-phase grid-connected systems. Grey wolf optimization (GWO) is a new meta-heuristic optimization approach based on the influence of wolves' natural leadership hierarchy and hunting mechanism. The proposed design required the photovoltaic (PV) array to be connected to a single-phase grid-connected system. First, a 5MW photovoltaic power supply is developed before being connected to the grid. Then, at the grid section, voltage sag and swell configurations are applied to show the single-phase faults that normally occur in the grid – voltage sag and swell. PI-GWO is introduced into the system to mitigate the power quality issue and analyze its effectiveness under different percentages of voltage sag and swell. It is found that the 10% and 20% of voltage sag and swell could be mitigate by using PI-GWO controller for a single-phase grid-connected photovoltaic system

    High Power, Medium Frequency, and Medium Voltage Transformer Design and Implementation

    Get PDF
    Many industrial applications that require high-power and high-voltage DC-DC conversion are emerging. Space-borne and off-shore wind farms, fleet fast electric vehicle charging stations, large data centers, and smart distribution systems are among the applications. Solid State Transformer (SST) is a promising concept for addressing these emerging applications. It replaces the traditional Low Frequency Transformer (LFT) while offering many advanced features such as VAR compensation, voltage regulation, fault isolation, and DC connectivity. Many technical challenges related to high voltage stress, efficiency, reliability, protection, and insulation must be addressed before the technology is ready for commercial deployment. Among the major challenges in the construction of SSTs are the strategies for connecting to Medium Voltage (MV) level. This issue has primarily been addressed by synthesizing multicellular SST concepts based on modules rated for a fraction of the total MV side voltage and connecting these modules in series at the input side. Silicon Carbide (SiC) semiconductor development enables the fabrication of power semiconductor devices with high blocking voltage capabilities while achieving superior switching and conduction performances. When compared to modular lower voltage converters, these higher voltage semiconductors enable the construction of single-cell SSTs by avoiding the series connection of several modules, resulting in simple, reliable, lighter mass, more power dense, higher efficiency, and cost effective converter structures. This dissertation proposes a solution to this major issue. The proposed work focuses on the development of a dual active bridge with high power, medium voltage, and medium frequency control. This architecture addresses the shortcomings of existing modular systems by providing a more power dense, cost-effective, and efficient solution. For the first time, this topology is investigated on a 700kW system connected to a 13kVdc input to generate 7.2kVdc at the output. The use of 10kV SiC modules and gate drivers in an active neutral point clamped to two level dual active bridge converter is investigated. A special emphasis will be placed on a comprehensive transformer design that employs a multi-physics approach that addresses all magnetic, electrical, insulation, and thermal aspects. The transformer is designed and tested to ensure the system’s viability

    Design and Control of a Dynamic Voltage Restorer

    Get PDF
    corecore