46 research outputs found

    Psyche

    Get PDF

    Peripheral and Central Auditory Processing in People With Absolute Pitch

    Get PDF
    Absolute pitch (AP) is a rare ability that is defined by being able to name musical pitches without a reference standard. This ability has been of interest to researchers studying music cognition and the processing of pitch information because it is very rarely expressed and raises questions about developmental interactions between biological predispositions and musical training. This dissertation focuses mainly on the peripheral and central neural substrates and is divided into seven chapters. The first chapter reviews the anatomy, function, and frequency resolution of the auditory peripheral and central nervous system. It includes background information pertaining to the origins of AP and describes inconsistencies reported throughout a number of studies that characterize AP emergence. Chapter two details a series of peripheral experiments on twenty AP and thirty-three control subjects recruited for testing at two locations. The goal was to test whether frequency resolution differences could be resolved at the level of the cochlea within both groups as a potential correlate for the genesis of AP. Chapter three details two behavioural tests that were administered to assess the smallest frequency difference that AP musicians could resolve and to test how well they could detect melodic mistuning excerpts compared to non-AP musicians and controls without musical experience. Both AP musicians and non-AP musicians did significantly better in both tests compared to non-musicians. However, there were no differences between the AP and non-AP musician groups. Chapter four details a functional MRI study that measured frequency tuning in the cortex using a population receptive field (pRF) model that estimates preferred frequency bandwidth in each voxel. This method was also tested in auditory subcortical nuclei such as the inferior colliculus and medial geniculate nucleus. Chapter five reports the neuro-anatomical correlates of musicianship and AP using structural MRI. Here we investigated cortical thickness and volume differences among the three groups and found a number of regions differed significantly. Cortical thickness was significantly greater in the left Heschls gyrus (an area that acts as a central hub for auditory processing) in AP musicians compared to non-AP musicians and non-musicians. AP and non-AP musicians also exhibited increased cortical thickness and volume throughout their cortex and subcortex. In line with previous studies, AP musicians showed decreased cortical thickness and volume in frontal regions such as the pars opercularis part of the inferior frontal gyrus. Chapter six reports the neuro-anatomical correlates of musicianship and AP using diffusion tensor imaging (DTI) to measure connectivity and white matter structural integrity in regions associated with audition and language processing. Tracts connecting language processing regions were reduced in volume in AP musicians compared to their non-AP counterparts. Chapter seven includes the general discussion, which integrates the findings and results from the five experiments. Our findings indicate that the sharpness of frequency tuning did not differ in either peripheral or central auditory processing stages among AP and non-AP groups. This implies that AP possessors do not encode or represent auditory frequency any differently than other groups, from the periphery through auditory cortex; instead, the neural substrate of their abilities must lie elsewhere. The automatic and working memory independent categorization abilities in AP may reflect more refined efficiency in local but not global functional connectivity

    Auditory aversion in absolute pitch possessors

    Full text link
    Absolute pitch (AP) refers to the ability of identifying the pitch of a given tone without reliance on any reference pitch. The downside of possessing AP may be the experience of disturbance when exposed to out-of-tune tones. Here, we investigated this so-far unexplored phenomenon in AP, which we refer to as auditory aversion. Electroencephalography (EEG) was recorded in a sample of AP possessors and matched control musicians without AP while letting them perform a task underlying a so-called affective priming paradigm: Participants judged valenced pictures preceded by musical primes as quickly and accurately as possible. The primes were bimodal, presented as tones in combination with visual notations that either matched or mismatched the actually presented tone. Both samples performed better in judging unpleasant pictures over pleasant ones. In comparison with the control musicians, the AP possessors revealed a more profound discrepancy between the two valence conditions, and their EEG revealed later peaks at around 200 ms (P200) after prime onset. Their performance dropped when responding to pleasant pictures preceded by incongruent primes, especially when mistuned by one semitone. This interference was also reflected in an EEG deflection at around 400 ms (N400) after picture onset, preceding the behavior responses. These findings suggest that AP possessors process mistuned musical stimuli and pleasant pictures as affectively unrelated with each other, supporting an aversion towards out-of-tune tones in AP possessors. The longer prime-related P200 latencies exhibited by AP possessors suggest a delay in integrating musical stimuli, underlying an altered affinity towards pitch-label associations

    A Tendency Towards Details? Inconsistent Results on Auditory and Visual Local-To-Global Processing in Absolute Pitch Musicians

    Get PDF
    Absolute pitch, the ability to name or produce a musical tone without a reference, is a rare ability which is often related to early musical training and genetic components. However, it remains a matter of debate why absolute pitch is relatively common in autism spectrum disorders and why absolute pitch possessors exhibit higher autistic traits. By definition absolute pitch is an ability that does not require the relation of tones but is based on a lower-level perceptual entity than relative pitch (involving relations between tones, intervals, and melodies). This study investigated whether a detail-oriented cognitive style, a concept borrowed from the autism literature (weak central coherence theory), might provide a framework to explain this joint occurrence. Two local-to-global experiments in vision (hierarchically constructed letters) and audition (hierarchically constructed melodies) as well as a pitch adjustment test measuring absolute pitch proficiency were conducted in 31 absolute pitch and 33 relative pitch professional musicians. Analyses revealed inconsistent group differences among reaction time, total of correct trials and speed-accuracy-composite-scores of experimental conditions (local vs. global, and congruent vs. incongruent stimuli). Furthermore, amounts of interference of global form on judgments of local elements and vice versa were calculated. Interestingly, reduced global-to-local interference in audition was associated with greater absolute pitch ability and in vision with higher autistic traits. Results are partially in line with the idea of a detail-oriented cognitive style in absolute pitch musicians. The inconsistency of the results might be due to limitations of global-to-local paradigms in measuring cognitive style and due to heterogeneity of absolute pitch possessors. In summary, this study provides further evidence for a multifaceted pattern of various and potentially interacting factors on the acquisition of absolute pitch

    Can musical training influence brain connectivity?:Evidence from diffusion tensor MRI

    Get PDF
    In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area

    Electrical Neuroimaging of Music Processing in Pianists With and Without True Absolute Pitch

    Get PDF
    True absolute pitch (AP), labeling of pitches with semitone precision without a reference, is classically studied using isolated tones. However, AP is acquired and has its function within complex dynamic musical contexts. Here we examined event-related brain responses and underlying cerebral sources to endings of short expressive string quartets, investigating a homogeneous population of young highly trained pianists with half of them possessing true-AP. The pieces ended regularly or contained harmonic transgressions at closure that participants appraised. Given the millisecond precision of ERP analyses, this experimental plan allowed examining whether AP alters music processing at an early perceptual, or later cognitive level, or both, and which cerebral sources underlie differences with non-AP musicians. We also investigated the impact of AP on general auditory cognition. Remarkably, harmonic transgression sensitivity did not differ between AP and non-AP participants, and differences for auditory cognition were only marginal. The key finding of this study is the involvement of a microstate peaking around 60 ms after musical closure, characterizing AP participants. Concurring sources were estimated in secondary auditory areas, comprising the planum temporale, all transgression conditions collapsed. These results suggest that AP is not a panacea to become a proficient musician, but a rare perceptual feature

    Magnetoencephalographic (MEG) Inter-subject Correlation using Continuous Music Stimuli

    Get PDF
    Music has existed throughout cultures for thousands of years and has been able to create powerful and intercultural connections between humans. Yet, early neurocognitive studies on music have utilized mainly artificial stimuli. Going towards more complex, real-world stimuli, this study examines magnetoencephalographic (MEG) brain responses to listening to continuous music in 24 musically trained and 19 untrained listeners. Three whole musical pieces of different genres were presented as stimuli. To investigate how similarly listeners’ brains process the music, inter-subject correlations (ISC) of the dynamics of specific MEG frequency bands were computed. This approach is a novel method for analyzing complex stimuli with MEG. Compared to functional magnetic resonance imaging (fMRI) studies, it adds to the information about synchronous processing of continuous music stimuli in the brain. Our MEG results show that auditory processing areas, including middle and superior temporal gyri, transverse temporal cortex and insula with enhanced right hemispheric responses, synchronize across subjects. The extend of synchronization differs depending on the selected frequency band and music stimulus. For the song that elicited highest ISCs across subjects, in the 4–8 Hz and 8–12 Hz frequency bands, musicians exhibit higher synchrony in auditory processing areas compared to non-musicians. In summary, listening to real music induces brain-to-brain coupling especially in auditory cortices. Coupling in musicians during listening to a piece with a variety and complexity of musical features is higher compared to non-trained participants

    Revisiting the conditioning variables of neuroplasticity induced by music training

    Get PDF
    Music training changes the brain both anatomically and functionally, where some variables conditioning the neuroplasticity. Here is a review of them, which include recent research in the neuroscience of music field. These variables are individual differences, sex, laterality, absolute pitch, instrument family, type of musical training received by the performer, training details –such as the intensity or age of onset, for example–, in addition to other environmental and genetic factors.El entrenamiento musical reiterado puede modificar el cerebro tanto anatómicamente como en su función, pero existen una serie de variables que condicionan la neuroplasticidad. Este texto realiza una revisión actualizada sobre ellas, revisitándolas incluyendo las últimas investigaciones en el campo de la neurociencia de la música. Entre las variables de interés, se encuentran las diferencias individuales, el sexo, la lateralidad manual, la habilidad de oído absoluto, el instrumento que se interpreta, el tipo de formación musical que recibe el intérprete, las particularidades del entrenamiento –como la intensidad del mismo o la edad de inicio, por ejemplo–, además de otros factores ambientales y genéticos
    corecore