53,762 research outputs found

    Bridging between sensor measurements and symbolic ontologies through conceptual spaces

    Get PDF
    The increasing availability of sensor data through a variety of sensor-driven devices raises the need to exploit the data observed by sensors with the help of formally specified knowledge representations, such as the ones provided by the Semantic Web. In order to facilitate such a Semantic Sensor Web, the challenge is to bridge between symbolic knowledge representations and the measured data collected by sensors. In particular, one needs to map a given set of arbitrary sensor data to a particular set of symbolic knowledge representations, e.g. ontology instances. This task is particularly challenging due to the potential infinite variety of possible sensor measurements. Conceptual Spaces (CS) provide a means to represent knowledge in geometrical vector spaces in order to enable computation of similarities between knowledge entities by means of distance metrics. We propose an ontology for CS which allows to refine symbolic concepts as CS and to ground instances to so-called prototypical members described by vectors. By computing similarities in terms of spatial distances between a given set of sensor measurements and a finite set of prototypical members, the most similar instance can be identified. In that, we provide a means to bridge between the real-world as observed by sensors and symbolic representations. We also propose an initial implementation utilizing our approach for measurement-based Semantic Web Service discovery

    Blending the physical and the digital through conceptual spaces

    Get PDF
    The rise of the Internet facilitates an ever increasing growth of virtual, i.e. digital spaces which co-exist with the physical environment, i.e. the physical space. In that, the question arises, how physical and digital space can interact synchronously. While sensors provide a means to continuously observe the physical space, several issues arise with respect to mapping sensor data streams to digital spaces, for instance, structured linked data, formally represented through symbolic Semantic Web (SW) standards such as OWL or RDF. The challenge is to bridge between symbolic knowledge representations and the measured data collected by sensors. In particular, one needs to map a given set of arbitrary sensor data to a particular set of symbolic knowledge representations, e.g. ontology instances. This task is particularly challenging due to the vast variety of possible sensor measurements. Conceptual Spaces (CS) provide a means to represent knowledge in geometrical vector spaces in order to enable computation of similarities between knowledge entities by means of distance metrics. We propose an approach which allows to refine symbolic concepts as CS and to ground ontology instances to so-called prototypical members which are vectors in the CS. By computing similarities in terms of spatial distances between a given set of sensor measurements and a finite set of CS members, the most similar instance can be identified. In that, we provide a means to bridge between the physical space, as observed by sensors, and the digital space made up of symbolic representations

    Exploiting conceptual spaces for ontology integration

    Get PDF
    The widespread use of ontologies raises the need to integrate distinct conceptualisations. Whereas the symbolic approach of established representation standards – based on first-order logic (FOL) and syllogistic reasoning – does not implicitly represent semantic similarities, ontology mapping addresses this problem by aiming at establishing formal relations between a set of knowledge entities which represent the same or a similar meaning in distinct ontologies. However, manually or semi-automatically identifying similarity relationships is costly. Hence, we argue, that representational facilities are required which enable to implicitly represent similarities. Whereas Conceptual Spaces (CS) address similarity computation through the representation of concepts as vector spaces, CS rovide neither an implicit representational mechanism nor a means to represent arbitrary relations between concepts or instances. In order to overcome these issues, we propose a hybrid knowledge representation approach which extends FOL-based ontologies with a conceptual grounding through a set of CS-based representations. Consequently, semantic similarity between instances – represented as members in CS – is indicated by means of distance metrics. Hence, automatic similarity detection across distinct ontologies is supported in order to facilitate ontology integration

    Towards ontology interoperability through conceptual groundings

    Get PDF
    Abstract. The widespread use of ontologies raises the need to resolve heterogeneities between distinct conceptualisations in order to support interoperability. The aim of ontology mapping is, to establish formal relations between a set of knowledge entities which represent the same or a similar meaning in distinct ontologies. Whereas the symbolic approach of established SW representation standards – based on first-order logic and syllogistic reasoning – does not implicitly represent similarity relationships, the ontology mapping task strongly relies on identifying semantic similarities. However, while concept representations across distinct ontologies hardly equal another, manually or even semi-automatically identifying similarity relationships is costly. Conceptual Spaces (CS) enable the representation of concepts as vector spaces which implicitly carry similarity information. But CS provide neither an implicit representational mechanism nor a means to represent arbitrary relations between concepts or instances. In order to overcome these issues, we propose a hybrid knowledge representation approach which extends first-order logic ontologies with a conceptual grounding through a set of CS-based representations. Consequently, semantic similarity between instances – represented as members in CS – is indicated by means of distance metrics. Hence, automatic similarity-detection between instances across distinct ontologies is supported in order to facilitate ontology mapping

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure

    DOOR: towards a formalization of ontology relations

    Get PDF
    In this paper, we describe our ongoing effort in describing and formalizing semantic relations that link ontolo- gies with each others on the Semantic Web in order to create an ontology, DOOR, to represent, manipulate and reason upon these relations. DOOR is a Descriptive Ontology of Ontology Relations which intends to define relations such as inclusion, versioning, similarity and agreement using ontological primitives as well as rules. Here, we provide a detailed description of the methodology used to design the DOOR ontology, as well as an overview of its content. We also describe how DOOR is used in a complete framework (called KANNEL) for detecting and managing semantic relations between ontologies in large ontology repositories. Applied in the context of a large collection of automatically crawled ontologies, DOOR and KANNEL provide a starting point for analyzing the underlying structure of the network of ontologies that is the Semantic Web
    • …
    corecore