1,407 research outputs found

    WIC midwintermeeting on IP-television (IP-TV):proceedings of a one-day workshop, Eindhoven, January 19, 2007

    Get PDF

    Performance analysis of a caching algorithm for a catch-up television service

    Get PDF
    The catch-up TV (CUTV) service allows users to watch video content that was previously broadcast live on TV channels and later placed on an on-line video store. Upon a request from a user to watch a recently missed episode of his/her favourite TV series, the content is streamed from the video server to the customer's receiver device. This requires that an individual flow is set up for the duration of the video, and since it is hard to impossible to employ multicast streaming for this purpose (as users seldomly issue a request for the same episode at the same time), these flows are unicast. In this paper, we demonstrate that with the growing popularity of the CUTV service, the number of simultaneously running unicast flows on the aggregation parts of the network threaten to lead to an unwieldy increase in required bandwidth. Anticipating this problem and trying to alleviate it, the network operators deploy caches in strategic places in the network. We investigate the performance of such a caching strategy and the impact of its size and the cache update logic. We first analyse and model the evolution of video popularity over time based on traces we collected during 10 months. Through simulations we compare the performance of the traditional least-recently used and least-frequently used caching algorithms to our own algorithm. We also compare their performance with a "perfect" caching algorithm, which knows and hence does not have to estimate the video request rates. In the experimental data, we see that the video parameters from the popularity evolution law can be clustered. Therefore, we investigate theoretical models that can capture these clusters and we study the impact of clustering on the caching performance. Finally, some considerations on the optimal cache placement are presented

    Network overload avoidance by traffic engineering and content caching

    Get PDF
    The Internet traffic volume continues to grow at a great rate, now driven by video and TV distribution. For network operators it is important to avoid congestion in the network, and to meet service level agreements with their customers. This thesis presents work on two methods operators can use to reduce links loads in their networks: traffic engineering and content caching. This thesis studies access patterns for TV and video and the potential for caching. The investigation is done both using simulation and by analysis of logs from a large TV-on-Demand system over four months. The results show that there is a small set of programs that account for a large fraction of the requests and that a comparatively small local cache can be used to significantly reduce the peak link loads during prime time. The investigation also demonstrates how the popularity of programs changes over time and shows that the access pattern in a TV-on-Demand system very much depends on the content type. For traffic engineering the objective is to avoid congestion in the network and to make better use of available resources by adapting the routing to the current traffic situation. The main challenge for traffic engineering in IP networks is to cope with the dynamics of Internet traffic demands. This thesis proposes L-balanced routings that route the traffic on the shortest paths possible but make sure that no link is utilised to more than a given level L. L-balanced routing gives efficient routing of traffic and controlled spare capacity to handle unpredictable changes in traffic. We present an L-balanced routing algorithm and a heuristic search method for finding L-balanced weight settings for the legacy routing protocols OSPF and IS-IS. We show that the search and the resulting weight settings work well in real network scenarios

    Long-term penetration and traffic forecasts for the Western European fixed broadband market

    Get PDF
    The objective with the paper is to describe, analyze and forecast the future fixed broadband penetration and traffic growth in NGN and NGA networks in Western Europe - one of the most advanced telecommunications areas in the world. Analyses show that the broadband penetrations are very well fitted by Logistic models. Here, extended Logistic four parameter models are used to develop broadband penetration forecasts 2011 - 2015. Separate forecasts are developed for DSL, HFC(Hybrid Fiber Coax), FTTx and FWA (Fixed Wireless Access) The traffic forecasts are developed per user in the busy hour. Hence, it is possible to assess the future fixed broadband busy hour traffic in NGA networks and also the accumulated busy hour traffic in NGN networks taking into account the fixed broadband penetration forecasts. --Fixed broadband,NGA,NGN,long-term forecasts,penetration,traffic

    Long-term drivers of broadband traffic in next-generation networks

    Get PDF
    This paper is concerned with long-term (20+ years) forecasting of broadband traffic in next-generation networks. Such long-term approach requires going beyond extrapolations of past traffic data while facing high uncertainty in predicting the future developments and facing the fact that, in 20 years, the current network technologies and architectures will be obsolete. Thus, "order of magnitude" upper bounds of upstream and downstream traffic are deemed to be good enough to facilitate such long-term forecasting. These bounds can be obtained by evaluating the limits of human sighting and assuming that these limits will be achieved by future services or, alternatively, by considering the contents transferred by bandwidth-demanding applications such as those using embedded interactive 3D video streaming. The traffic upper bounds are a good indication of the peak values and, subsequently, also of the future network capacity demands. Furthermore, the main drivers of traffic growth including multimedia as well as non-multimedia applications are identified. New disruptive applications and services are explored that can make good use of the large bandwidth provided by next-generation networks. The results can be used to identify monetization opportunities of future services and to map potential revenues for network operators

    Evaluation of cross-layer reliability mechanisms for satellite digital multimedia broadcast

    Get PDF
    This paper presents a study of some reliability mechanisms which may be put at work in the context of Satellite Digital Multimedia Broadcasting (SDMB) to mobile devices such as handheld phones. These mechanisms include error correcting codes, interleaving at the physical layer, erasure codes at intermediate layers and error concealment on the video decoder. The evaluation is made on a realistic satellite channel and takes into account practical constraints such as the maximum zapping time and the user mobility at several speeds. The evaluation is done by simulating different scenarii with complete protocol stacks. The simulations indicate that, under the assumptions taken here, the scenario using highly compressed video protected by erasure codes at intermediate layers seems to be the best solution on this kind of channel
    corecore