120 research outputs found
Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network.
Cardio-vascular diseases are one of the foremost causes of mortality in today’s world. The prognosis for cardiovascular diseases is usually done by ECG signal, which is a simple 12-lead Electrocardiogram (ECG) that gives complete information about the function of the heart including the amplitude and time interval of P-QRST-U segment. This article recommends a novel approach to identify the location of thrombus in culprit artery using the Information Fuzzy Network (IFN). Information Fuzzy Network, being a supervised machine learning technique, takes known evidences based on rules to create a predicted classification model with thrombus location obtained from the vast input ECG data. These rules are well-defined procedures for selecting hypothesis that best fits a set of observations. Results illustrate that the recommended approach yields an accurateness of 92.30%. This novel approach is shown to be a viable ECG analysis approach for identifying the culprit artery and thus localizing the thrombus
Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network
Cardio-vascular diseases are one of the foremost causes of mortality in today’s world. The prognosis for cardiovascular diseases is usually done by ECG signal, which is a simple 12-lead Electrocardiogram (ECG) that gives complete information about the function of the heart including the amplitude and time interval of P-QRST-U segment. This article recommends a novel approach to identify the location of thrombus in culprit artery using the Information Fuzzy Network (IFN). Information Fuzzy Network, being a supervised machine learning technique, takes known evidences based on rules to create a predicted classification model with thrombus location obtained from the vast input ECG data. These rules are well-defined procedures for selecting hypothesis that best fits a set of observations. Results illustrate that the recommended approach yields an accurateness of 92.30%. This novel approach is shown to be a viable ECG analysis approach for identifying the culprit artery and thus localizing the thrombus
Representación efectiva de dinámicas fisiológicas mediante fuzzy rough set: una revisión
The latest generation of biomedical systems record at short time intervals the physiological dynamic in large databases. The correct interpretation of the information is difficult to obtain by the expertise of a single physician, so the decision is based only on some selected variables. Effective representation of physiological variables by fuzzy Rough Set type 1 can be applied to characterize and extract relevant information from physiological dynamics, however the disadvantages of these techniques are the complexity of their algorithms and the high computational cost, therefore it is necessary to apply fuzzy rough set type 2 techniques , associated with axiomatic methods through low and high diffuse approximation operators as primitive concepts for generating a dimension reduction system with a tendency to lower computational cost in biomedical engineering applications. This article reviews the state of the art of effective representation of physiological dynamics using fuzzy rough set, in order to determine the ability of these techniques to be included in automatic decision making procedures that support the clinical opinion of a specialist.Los sistemas biomédicos de última generación registran en intervalos cortos de tiempo la dinámica fisiológica mediante grandes bases de datos. La interpretación adecuada de la información difícilmente puede hacerse por la experticia de un sólo médico, por lo tanto la toma de decisiones se basa sólo en algunas variables seleccionadas. La representación efectiva de variables fisiológicas mediante fuzzy rough set tipo 1 puede ser aplicada para caracterizar y extraer la información relevante de la dinámica fisiológica; sin embargo, estas técnicas poseen el problema de la complejidad de sus algoritmos y alto costo computacional; por lo tanto, se requiere aplicar técnicas de fuzzy rough set tipo 2, asociadas a métodos axiomáticos a través de operadores de aproximación difusa baja y alta como conceptos primitivos para generar un sistema de reducción de dimensiones con tendencia a la disminución de costo computacional en aplicaciones de ingeniería biomédica. En este artículo se presenta la revisión del estado del arte sobre representación efectiva de dinámicas fisiológicas mediante fuzzy rough set, con el fin de determinar la capacidad que poseen este tipo de técnicas para ser incluidas en procedimientos automáticos de toma de decisiones que apoyen el concepto clínico de un especialista
Análisis estocástico de señales vibratorias de motores de inducción para la detección de fallas usando descomposición de modo empírico
This paper presents a vibration analysis on induction motors using Hidden Markov Models (HMM) applied to features obtained from the Empirical Mode Decomposition (EMD) and Hilbert-Huang transform to vibration signals obtained in the coordinates x and y, in order to detect malfunctions in bearings and bars. Additionally, a comparative analysis of the ability of the vibration signals in the x and y directions to provide information for failures detection is presented. Thus, an ergodic HMM initialized and trained by expectation maximization algorithm with convergence at 10e-7 and maximum iterations of 100 was applied to the feature space and its performance was determined by cross-validation with 80-20 with 30 fold for obtaining high performance fault detection in terms of accuracy.En este artículo se presenta un análisis de vibraciones en motores de inducción por medio de Modelos Ocultos de Markov (Hidden Markov Model - HMM) aplicado a características obtenidas de la Descomposición de Modo Empírico (Empirical Mode Decomposition - EMD) y transformada de Hilbert-Huang de señales de vibración obtenidas en las coordenadas x y y, con el fin de detectar fallas de funcionamiento en rodamientos y barras. Además se presenta un análisis comparativo de la capacidad de las señales de vibración en dirección x y en dirección y, para aportar información en la detección de fallas. Así, un HMM ergódico inicializado y entrenado por medio del algoritmo de máxima esperanza, con convergencia en 10e-7 y un máximo de iteraciones de 100, se aplicó sobre el espacio de características y su desempeño fue determinado mediante validación cruzada 80-20 con 30 fold, obteniendo un alto desempeño para la detección de fallas en términos de exactitud
Interfaz Cerebro Computador Basado en Señales EEG para el Control de Movimiento de una Prótesis de Mano Usando ANFIS
Uncertainty visualization : concepts, methods, and applications in biological data visualization
This paper provides an overview of uncertainty visualization in general, along with specific examples of applications in bioinformatics. Starting from a processing and interaction pipeline of visualization, components are discussed that are relevant for handling and visualizing uncertainty introduced with the original data and at later stages in the pipeline, which shows the importance of making the stages of the pipeline aware of uncertainty and allowing them to propagate uncertainty. We detail concepts and methods for visual mappings of uncertainty, distinguishing between explicit and implict representations of distributions, different ways to show summary statistics, and combined or hybrid visualizations. The basic concepts are illustrated for several examples of graph visualization under uncertainty. Finally, this review paper discusses implications for the visualization of biological data and future research directions.Deutsche Forschungsgemeinschaf
Information technologies for pain management
Millions of people around the world suffer from pain, acute or chronic and this raises the
importance of its screening, assessment and treatment. The importance of pain is attested by
the fact that it is considered the fifth vital sign for indicating basic bodily functions, health
and quality of life, together with the four other vital signs: blood pressure, body
temperature, pulse rate and respiratory rate. However, while these four signals represent an
objective physical parameter, the occurrence of pain expresses an emotional status that
happens inside the mind of each individual and therefore, is highly subjective that makes
difficult its management and evaluation. For this reason, the self-report of pain is considered
the most accurate pain assessment method wherein patients should be asked to periodically
rate their pain severity and related symptoms. Thus, in the last years computerised systems
based on mobile and web technologies are becoming increasingly used to enable patients to
report their pain which lead to the development of electronic pain diaries (ED). This approach
may provide to health care professionals (HCP) and patients the ability to interact with the
system anywhere and at anytime thoroughly changes the coordinates of time and place and
offers invaluable opportunities to the healthcare delivery. However, most of these systems
were designed to interact directly to patients without presence of a healthcare professional
or without evidence of reliability and accuracy. In fact, the observation of the existing
systems revealed lack of integration with mobile devices, limited use of web-based interfaces
and reduced interaction with patients in terms of obtaining and viewing information. In
addition, the reliability and accuracy of computerised systems for pain management are
rarely proved or their effects on HCP and patients outcomes remain understudied.
This thesis is focused on technology for pain management and aims to propose a monitoring
system which includes ubiquitous interfaces specifically oriented to either patients or HCP
using mobile devices and Internet so as to allow decisions based on the knowledge obtained
from the analysis of the collected data. With the interoperability and cloud computing
technologies in mind this system uses web services (WS) to manage data which are stored in a
Personal Health Record (PHR).
A Randomised Controlled Trial (RCT) was implemented so as to determine the effectiveness
of the proposed computerised monitoring system. The six weeks RCT evidenced the
advantages provided by the ubiquitous access to HCP and patients so as to they were able to
interact with the system anywhere and at anytime using WS to send and receive data. In
addition, the collected data were stored in a PHR which offers integrity and security as well
as permanent on line accessibility to both patients and HCP. The study evidenced not only
that the majority of participants recommend the system, but also that they recognize it
suitability for pain management without the requirement of advanced skills or experienced users. Furthermore, the system enabled the definition and management of patient-oriented
treatments with reduced therapist time. The study also revealed that the guidance of HCP at
the beginning of the monitoring is crucial to patients' satisfaction and experience stemming
from the usage of the system as evidenced by the high correlation between the
recommendation of the application, and it suitability to improve pain management and to
provide medical information. There were no significant differences regarding to
improvements in the quality of pain treatment between intervention group and control group.
Based on the data collected during the RCT a clinical decision support system (CDSS) was
developed so as to offer capabilities of tailored alarms, reports, and clinical guidance. This
CDSS, called Patient Oriented Method of Pain Evaluation System (POMPES), is based on the
combination of several statistical models (one-way ANOVA, Kruskal-Wallis and Tukey-Kramer)
with an imputation model based on linear regression. This system resulted in fully accuracy
related to decisions suggested by the system compared with the medical diagnosis, and
therefore, revealed it suitability to manage the pain. At last, based on the aerospace systems
capability to deal with different complex data sources with varied complexities and
accuracies, an innovative model was proposed. This model is characterized by a qualitative
analysis stemming from the data fusion method combined with a quantitative model based on
the comparison of the standard deviation together with the values of mathematical
expectations. This model aimed to compare the effects of technological and pen-and-paper
systems when applied to different dimension of pain, such as: pain intensity, anxiety,
catastrophizing, depression, disability and interference. It was observed that pen-and-paper
and technology produced equivalent effects in anxiety, depression, interference and pain
intensity. On the contrary, technology evidenced favourable effects in terms of
catastrophizing and disability. The proposed method revealed to be suitable, intelligible, easy
to implement and low time and resources consuming. Further work is needed to evaluate the
proposed system to follow up participants for longer periods of time which includes a
complementary RCT encompassing patients with chronic pain symptoms. Finally, additional
studies should be addressed to determine the economic effects not only to patients but also
to the healthcare system
Advances in Digital Processing of Low-Amplitude Components of Electrocardiosignals
This manual has been published within the framework of the BME-ENA project under the responsibility of National Technical University of Ukraine. The BME-ENA “Biomedical Engineering Education Tempus Initiative in Eastern Neighbouring Area”, Project Number: 543904-TEMPUS-1-2013-1-GR-TEMPUS-JPCR is a Joint Project within the TEMPUS IV program. This project has been funded with support from the European Commission.Навчальний посібник присвячено розробці методів та засобів для неінвазивного виявлення та дослідження тонких проявів електричної активності серця. Особлива увага приділяється вдосконаленню інформаційного та алгоритмічного забезпечення систем електрокардіографії високого розрізнення для ранньої діагностики електричної нестабільності міокарда, а також для оцінки функціонального стану плоду під час вагітності.
Теоретичні основи супроводжуються прикладами реалізації алгоритмів за допомогою системи MATLAB. Навчальний посібник призначений для студентів, аспірантів, а також фахівців у галузі біомедичної електроніки та медичних працівників.The teaching book is devoted to development and research of methods and tools for non-invasive detection of subtle manifistations of heart electrical activity. Particular attention is paid to the improvement of information and algorithmic support of high resolution electrocardiography for early diagnosis of myocardial electrical instability, as well as for the evaluation of the functional state of the fetus during pregnancy examination.
The theoretical basis accompanied by the examples of implementation of the discussed algorithms with the help of MATLAB. The teaching book is intended for students, graduate students, as well as specialists in the field of biomedical electronics and medical professionals
- …
