10 research outputs found

    Dimensionality reduction based on determinantal point process and singular spectrum analysis for hyperspectral images

    Get PDF
    Dimensionality reduction is of high importance in hyperspectral data processing, which can effectively reduce the data redundancy and computation time for improved classification accuracy. Band selection and feature extraction methods are two widely used dimensionality reduction techniques. By integrating the advantages of the band selection and feature extraction, the authors propose a new method for reducing the dimension of hyperspectral image data. First, a new and fast band selection algorithm is proposed for hyperspectral images based on an improved determinantal point process (DPP). To reduce the amount of calculation, the dual-DPP is used for fast sampling representative pixels, followed by k-nearest neighbour-based local processing to explore more spatial information. These representative pixel points are used to construct multiple adjacency matrices to describe the correlation between bands based on mutual information. To further improve the classification accuracy, two-dimensional singular spectrum analysis is used for feature extraction from the selected bands. Experiments show that the proposed method can select a low-redundancy and representative band subset, where both data dimension and computation time can be reduced. Furthermore, it also shows that the proposed dimensionality reduction algorithm outperforms a number of state-of-the-art methods in terms of classification accuracy

    A novel band selection and spatial noise reduction method for hyperspectral image classification.

    Get PDF
    As an essential reprocessing method, dimensionality reduction (DR) can reduce the data redundancy and improve the performance of hyperspectral image (HSI) classification. A novel unsupervised DR framework with feature interpretability, which integrates both band selection (BS) and spatial noise reduction method, is proposed to extract low-dimensional spectral-spatial features of HSI. We proposed a new Neighboring band Grouping and Normalized Matching Filter (NGNMF) for BS, which can reduce the data dimension whilst preserve the corresponding spectral information. An enhanced 2-D singular spectrum analysis (E2DSSA) method is also proposed to extract the spatial context and structural information from each selected band, aiming to decrease the intra-class variability and reduce the effect of noise in the spatial domain. The support vector machine (SVM) classifier is used to evaluate the effectiveness of the extracted spectral-spatial low-dimensional features. Experimental results on three publicly available HSI datasets have fully demonstrated the efficacy of the proposed NGNMF-E2DSSA method, which has surpassed a number of state-of-the-art DR methods

    Harmonic Analysis Inspired Data Fusion for Applications in Remote Sensing

    Get PDF
    This thesis will address the fusion of multiple data sources arising in remote sensing, such as hyperspectral and LIDAR. Fusing of multiple data sources provides better data representation and classification results than any of the independent data sources would alone. We begin our investigation with the well-studied Laplacian Eigenmap (LE) algorithm. This algorithm offers a rich template to which fusion concepts can be added. For each phase of the LE algorithm (graph, operator, and feature space) we develop and test different data fusion techniques. We also investigate how partially labeled data and approximate LE preimages can used to achieve data fusion. Lastly, we study several numerical acceleration techniques that can be used to augment the developed algorithms, namely the Nystrom extension, Random Projections, and Approximate Neighborhood constructions. The Nystrom extension is studied in detail and the application of Frame Theory and Sigma-Delta Quantization is proposed to enrich the Nystrom extension

    Investigation of feature extraction algorithms and techniques for hyperspectral images.

    Get PDF
    Doctor of Philosophy (Computer Engineering). University of KwaZulu-Natal. Durban, 2017.Hyperspectral images (HSIs) are remote-sensed images that are characterized by very high spatial and spectral dimensions and nd applications, for example, in land cover classi cation, urban planning and management, security and food processing. Unlike conventional three bands RGB images, their high dimensional data space creates a challenge for traditional image processing techniques which are usually based on the assumption that there exists su cient training samples in order to increase the likelihood of high classi cation accuracy. However, the high cost and di culty of obtaining ground truth of hyperspectral data sets makes this assumption unrealistic and necessitates the introduction of alternative methods for their processing. Several techniques have been developed in the exploration of the rich spectral and spatial information in HSIs. Speci cally, feature extraction (FE) techniques are introduced in the processing of HSIs as a necessary step before classi cation. They are aimed at transforming the high dimensional data of the HSI into one of a lower dimension while retaining as much spatial and/or spectral information as possible. In this research, we develop semi-supervised FE techniques which combine features of supervised and unsupervised techniques into a single framework for the processing of HSIs. Firstly, we developed a feature extraction algorithm known as Semi-Supervised Linear Embedding (SSLE) for the extraction of features in HSI. The algorithm combines supervised Linear Discriminant Analysis (LDA) and unsupervised Local Linear Embedding (LLE) to enhance class discrimination while also preserving the properties of classes of interest. The technique was developed based on the fact that LDA extracts features from HSIs by discriminating between classes of interest and it can only extract C 1 features provided there are C classes in the image by extracting features that are equivalent to the number of classes in the HSI. Experiments show that the SSLE algorithm overcomes the limitation of LDA and extracts features that are equivalent to ii iii the number of classes in HSIs. Secondly, a graphical manifold dimension reduction (DR) algorithm known as Graph Clustered Discriminant Analysis (GCDA) is developed. The algorithm is developed to dynamically select labeled samples from the pool of available unlabeled samples in order to complement the few available label samples in HSIs. The selection is achieved by entwining K-means clustering with a semi-supervised manifold discriminant analysis. Using two HSI data sets, experimental results show that GCDA extracts features that are equivalent to the number of classes with high classi cation accuracy when compared with other state-of-the-art techniques. Furthermore, we develop a window-based partitioning approach to preserve the spatial properties of HSIs when their features are being extracted. In this approach, the HSI is partitioned along its spatial dimension into n windows and the covariance matrices of each window are computed. The covariance matrices of the windows are then merged into a single matrix through using the Kalman ltering approach so that the resulting covariance matrix may be used for dimension reduction. Experiments show that the windowing approach achieves high classi cation accuracy and preserves the spatial properties of HSIs. For the proposed feature extraction techniques, Support Vector Machine (SVM) and Neural Networks (NN) classi cation techniques are employed and their performances are compared for these two classi ers. The performances of all proposed FE techniques have also been shown to outperform other state-of-the-art approaches

    Introduction by the Organisers

    Get PDF

    Decomposability of Tensors

    Get PDF
    Tensor decomposition is a relevant topic, both for theoretical and applied mathematics, due to its interdisciplinary nature, which ranges from multilinear algebra and algebraic geometry to numerical analysis, algebraic statistics, quantum physics, signal processing, artificial intelligence, etc. The starting point behind the study of a decomposition relies on the idea that knowledge of elementary components of a tensor is fundamental to implement procedures that are able to understand and efficiently handle the information that a tensor encodes. Recent advances were obtained with a systematic application of geometric methods: secant varieties, symmetries of special decompositions, and an analysis of the geometry of finite sets. Thanks to new applications of theoretic results, criteria for understanding when a given decomposition is minimal or unique have been introduced or significantly improved. New types of decompositions, whose elementary blocks can be chosen in a range of different possible models (e.g., Chow decompositions or mixed decompositions), are now systematically studied and produce deeper insights into this topic. The aim of this Special Issue is to collect papers that illustrate some directions in which recent researches move, as well as to provide a wide overview of several new approaches to the problem of tensor decomposition

    Emergence of Structures in Particle Systems: Mechanics, Analysis and Computation

    Get PDF
    The meeting focused on the last advances in particle systems. The talks covered a broad range of topics, ranging from questions in crystallization and atomistic systems to mesoscopic models of defects to machine learning approaches and computational aspects

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Dipterocarps protected by Jering local wisdom in Jering Menduyung Nature Recreational Park, Bangka Island, Indonesia

    Get PDF
    Apart of the oil palm plantation expansion, the Jering Menduyung Nature Recreational Park has relatively diverse plants. The 3,538 ha park is located at the north west of Bangka Island, Indonesia. The minimum species-area curve was 0.82 ha which is just below Dalil conservation forest that is 1.2 ha, but it is much higher than measurements of several secondary forests in the Island that are 0.2 ha. The plot is inhabited by more than 50 plant species. Of 22 tree species, there are 40 individual poles with the average diameter of 15.3 cm, and 64 individual trees with the average diameter of 48.9 cm. The density of Dipterocarpus grandiflorus (Blanco) Blanco or kruing, is 20.7 individual/ha with the diameter ranges of 12.1 – 212.7 cm or with the average diameter of 69.0 cm. The relatively intact park is supported by the local wisdom of Jering tribe, one of indigenous tribes in the island. People has regulated in cutting trees especially in the cape. The conservation agency designates the park as one of the kruing propagules sources in the province. The growing oil palm plantation and the less adoption of local wisdom among the youth is a challenge to forest conservation in the province where tin mining activities have been the economic driver for decades. More socialization from the conservation agency and the involvement of university students in raising environmental awareness is important to be done
    corecore