14,607 research outputs found

    Subspace clustering of dimensionality-reduced data

    Full text link
    Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union of low-dimensional linear subspaces, assumed unknown. In practice one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from "undersampling" due to complexity and speed constraints on the acquisition device. More pertinently, even if one has access to the high-dimensional data set it is often desirable to first project the data points into a lower-dimensional space and to perform the clustering task there; this reduces storage requirements and computational cost. The purpose of this paper is to quantify the impact of dimensionality-reduction through random projection on the performance of the sparse subspace clustering (SSC) and the thresholding based subspace clustering (TSC) algorithms. We find that for both algorithms dimensionality reduction down to the order of the subspace dimensions is possible without incurring significant performance degradation. The mathematical engine behind our theorems is a result quantifying how the affinities between subspaces change under random dimensionality reducing projections.Comment: ISIT 201

    A randomised non-descent method for global optimisation

    Full text link
    This paper proposes novel algorithm for non-convex multimodal constrained optimisation problems. It is based on sequential solving restrictions of problem to sections of feasible set by random subspaces (in general, manifolds) of low dimensionality. This approach varies in a way to draw subspaces, dimensionality of subspaces, and method to solve restricted problems. We provide empirical study of algorithm on convex, unimodal and multimodal optimisation problems and compare it with efficient algorithms intended for each class of problems.Comment: 9 pages, 7 figure

    Dissimilarity-based Ensembles for Multiple Instance Learning

    Get PDF
    In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.Comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems, Special Issue on Learning in Non-(geo)metric Space
    • …
    corecore