8,965 research outputs found

    Supervised Learning with Similarity Functions

    Full text link
    We address the problem of general supervised learning when data can only be accessed through an (indefinite) similarity function between data points. Existing work on learning with indefinite kernels has concentrated solely on binary/multi-class classification problems. We propose a model that is generic enough to handle any supervised learning task and also subsumes the model previously proposed for classification. We give a "goodness" criterion for similarity functions w.r.t. a given supervised learning task and then adapt a well-known landmarking technique to provide efficient algorithms for supervised learning using "good" similarity functions. We demonstrate the effectiveness of our model on three important super-vised learning problems: a) real-valued regression, b) ordinal regression and c) ranking where we show that our method guarantees bounded generalization error. Furthermore, for the case of real-valued regression, we give a natural goodness definition that, when used in conjunction with a recent result in sparse vector recovery, guarantees a sparse predictor with bounded generalization error. Finally, we report results of our learning algorithms on regression and ordinal regression tasks using non-PSD similarity functions and demonstrate the effectiveness of our algorithms, especially that of the sparse landmark selection algorithm that achieves significantly higher accuracies than the baseline methods while offering reduced computational costs.Comment: To appear in the proceedings of NIPS 2012, 30 page

    A Taxonomy of Big Data for Optimal Predictive Machine Learning and Data Mining

    Full text link
    Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham's razor non plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.Comment: 18 pages, 2 figures 3 table

    Fast, Dense Feature SDM on an iPhone

    Full text link
    In this paper, we present our method for enabling dense SDM to run at over 90 FPS on a mobile device. Our contributions are two-fold. Drawing inspiration from the FFT, we propose a Sparse Compositional Regression (SCR) framework, which enables a significant speed up over classical dense regressors. Second, we propose a binary approximation to SIFT features. Binary Approximated SIFT (BASIFT) features, which are a computationally efficient approximation to SIFT, a commonly used feature with SDM. We demonstrate the performance of our algorithm on an iPhone 7, and show that we achieve similar accuracy to SDM

    Weighted k-Nearest-Neighbor Techniques and Ordinal Classification

    Get PDF
    In the field of statistical discrimination k-nearest neighbor classification is a well-known, easy and successful method. In this paper we present an extended version of this technique, where the distances of the nearest neighbors can be taken into account. In this sense there is a close connection to LOESS, a local regression technique. In addition we show possibilities to use nearest neighbor for classification in the case of an ordinal class structure. Empirical studies show the advantages of the new techniques
    corecore