41,189 research outputs found

    Nonlinear Supervised Dimensionality Reduction via Smooth Regular Embeddings

    Full text link
    The recovery of the intrinsic geometric structures of data collections is an important problem in data analysis. Supervised extensions of several manifold learning approaches have been proposed in the recent years. Meanwhile, existing methods primarily focus on the embedding of the training data, and the generalization of the embedding to initially unseen test data is rather ignored. In this work, we build on recent theoretical results on the generalization performance of supervised manifold learning algorithms. Motivated by these performance bounds, we propose a supervised manifold learning method that computes a nonlinear embedding while constructing a smooth and regular interpolation function that extends the embedding to the whole data space in order to achieve satisfactory generalization. The embedding and the interpolator are jointly learnt such that the Lipschitz regularity of the interpolator is imposed while ensuring the separation between different classes. Experimental results on several image data sets show that the proposed method outperforms traditional classifiers and the supervised dimensionality reduction algorithms in comparison in terms of classification accuracy in most settings

    Graph Signal Representation with Wasserstein Barycenters

    Get PDF
    In many applications signals reside on the vertices of weighted graphs. Thus, there is the need to learn low dimensional representations for graph signals that will allow for data analysis and interpretation. Existing unsupervised dimensionality reduction methods for graph signals have focused on dictionary learning. In these works the graph is taken into consideration by imposing a structure or a parametrization on the dictionary and the signals are represented as linear combinations of the atoms in the dictionary. However, the assumption that graph signals can be represented using linear combinations of atoms is not always appropriate. In this paper we propose a novel representation framework based on non-linear and geometry-aware combinations of graph signals by leveraging the mathematical theory of Optimal Transport. We represent graph signals as Wasserstein barycenters and demonstrate through our experiments the potential of our proposed framework for low-dimensional graph signal representation
    • …
    corecore