511 research outputs found

    Cartesian Stiffness Matrix Mapping of a Translational Parallel Mechanism with Elastic Joints

    Get PDF
    This paper is devoted to calculating the Cartesian stiffness matrix of a translational parallel manipulator with elastic joints. The calculation takes into account the contribution of the Jacobian variation because of the change of manipulator configuration due to the elasticity and it covers the entire theoretical workspace of the manipulator. Three kineto‐static adimensional indices are proposed to measure the response of the manipulator in terms of stiffness

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generadasPostprint (published version

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generada

    Modeling parallel robot kinematics for 3T2R and 3T3R tasks using reciprocal sets of Euler angles

    Get PDF
    Industrial manipulators and parallel robots are often used for tasks, such as drilling or milling, that require three translational, but only two rotational degrees of freedom ("3T2R"). While kinematic models for specific mechanisms for these tasks exist, a general kinematic model for parallel robots is still missing. This paper presents the definition of the rotational component of kinematic constraints equations for parallel robots based on two reciprocal sets of Euler angles for the end-effector orientation and the orientation residual. The method allows completely removing the redundant coordinate in 3T2R tasks and to solve the inverse kinematics for general serial and parallel robots with the gradient descent algorithm. The functional redundancy of robots with full mobility is exploited using nullspace projection

    7-degree-of-freedom hybrid-manipulator exoskeleton for lower-limb motion capture

    Get PDF
    Lower-limb exoskeletons are wearable robotic systems with a kinematic structure closely matching that of the human leg. In part, this technology can be used to provide clinical assessment and improved independent-walking competency for people living with the effects of stroke, spinal cord injury, Parkinson’s disease, multiple sclerosis, and sarcopenia. Individually, these demographics represent approximately: 405 thousand, 100 thousand, 67.5 thousand, 100 thousand, and 5.9 million Canadians, respectively. Key shortcomings in the current state-of-the-art are: restriction on several of the human leg’s primary joint movements, coaxial joint alignments at the exoskeleton-human interface, and exclusion of well-suited parallel manipulator components. A novel exoskeleton design is thus formulated to address these issues while maintaining large ranges of joint motion. Ultimately, a single-leg unactuated prototype is constructed for seven degree-of-freedom joint angle measurements; it achieves an extent of motion-capture accuracy comparable to a commercial inertial-based system during three levels of human mobility testing

    Structure and Reactivity of Aromatic Molecules on Metal Single-Crystal Surfaces and at Metal/Organic Interfaces

    Get PDF
    Low-dimensional carbon-based nanostructures are considered for the fabrication of modern electronic devices. For the realization of such devices, it is of utmost importance to achieve a high control over the structural quality. As a result, the field of on-surface synthesis, which aims at producing well-defined structures from tailor-made molecular precursors, has grown rapidly over the past decade. The reaction most frequently used to conduct on-surface synthesis is the Ullmann coupling reaction. Although a lot of work has already been invested, the fundamental principles determining the outcome of this reaction have not fully been understood to date. One prototypical case for such a situation is the product formation on the basis of precursor molecules that can either form long oligomer chains or macrocycles. This cumulative dissertation thesis contains a number of articles investigating the reaction products of different precursor molecules bearing these characteristics. They are investigated on metal single-crystal surfaces by scanning tunneling microscopy and complementary surface science techniques such as X-ray photoelectron spectroscopy or angle-resolved photoemission spectroscopy, accompanied by Monte Carlo simulations. The ring/chain ratio formed by the model system 1,3-dibromoazulene on Cu(111) was studied. By this means new insights on how the ring/chain ratio can be tunedby variation of coverage and temperature were gained based on fundamental physicochemical considerations. An alternative approach to steer the reaction outcome was used by applying a surface template, i.e., a vicinal Ag surface, to exclusively form long, perfectly aligned oligomer chains from the 4,4''-dibromo-1,1':3',1''-terphenyl precursor. Furthermore, the 2,6-dibromoazulene precursor, which can exclusively form chains, was used to generate nanoribbons of the non-alternant graphene allotropes phagraphene and tetra-penta-hepta-graphene on Au(111). The structures of these species have been unambiguously elucidated by non-contact atomic force microscopy experiments carried out in a collaboration project. As a last project, the structural polymorphism of the pure self-assembly of 1,1':3',1'':4'',1'''-quaterphenyl-4,4'''-dicarbonitrile on the Ag(111) surface was investigated. This molecule shows an adsorbate structure containing flat-lying and upright-standing molecules. Such a structure had not been reported so far. Along with the structures formed, the performance of organic-electronic devices is also crucially dependent on the interactions between the substrate and the organic layer itself. To contribute to this field of research, studies on different model systems, i.e., porphyrins, corroles, and the non-alternant aromatic molecule azulene, have been performed in collaboration projects mostly involving synchrotron radiation beamtimes. In addition to the results already published in scientific journals, some unpublished results are part of this thesis. These are the investigation of the 1,3-dibromoazulene precursor on the Ag(111) surface with co-deposited Cu atoms and the successful initial operation of a commercially available atomic layer injection device. The experimental results are supplemented by the development and construction of technical instrumentation, which expands the capabilities of the measurement setup in the laboratory of the Gottfried group in Marburg

    Surface Structure/Property Relationship for (001) Surface of Magnetite

    Get PDF
    Magnetite (Fe3O4), a well-known magnetic material, is still attracting intense study because of its great application in catalyst and technology development. These useful properties are related to the coexistence and coupling of several degrees of freedom, including charge, lattice, orbital and spin. The interaction between Fe3O4 and hydrogen is one of the most important issues, which guides the development of catalytic efficiency and material practicality. In this work, natural single crystal Fe3O4 (001) surfaces are studied with a variety of techniques. It is discovered that the Fe3O4 (001) surface structure and properties are dependent on the surface preparation methods. Conventional processed surfaces in an oxygen-rich environment are found to be oxygen deficient, with a significant amount of ordered oxygen vacancies on the surface and even penetrate deep into the bulk. The more stoichiometric surface is then obtained by ozone treatment, which successfully removes most surface vacancies. Atomic hydrogen is used to probe the Fe3O4 (001) surface. On an ozone processed (OP) surface, H bonds to surface oxygen, which form hydroxyl as expected. However, on conventional processed (CP) surfaces, H is found to bond preferentially to the surface Fe atoms. This abnormal H-Fe bonding is a result of oxygen vacancies on the CP surface. One explanation is, when H is adsorbed by a CP surface, it leads to the formation and desorption of water, thus creating more oxygen vacancies and stabilizing H-Fe bonds. Our study shows that previous experimental work on CP Fe3O4 surfaces all deal with oxygen deficient surfaces, which solves the long disagreement between experimental results and theoretical predictions. The different H bonding on CP and OP surfaces can serve as a novel direction of catalysis development and hydrogen storage applications

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects
    corecore