10,727 research outputs found

    Affective Music Information Retrieval

    Full text link
    Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.Comment: 40 pages, 18 figures, 5 tables, author versio

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    Sequential Complexity as a Descriptor for Musical Similarity

    Get PDF
    We propose string compressibility as a descriptor of temporal structure in audio, for the purpose of determining musical similarity. Our descriptors are based on computing track-wise compression rates of quantised audio features, using multiple temporal resolutions and quantisation granularities. To verify that our descriptors capture musically relevant information, we incorporate our descriptors into similarity rating prediction and song year prediction tasks. We base our evaluation on a dataset of 15500 track excerpts of Western popular music, for which we obtain 7800 web-sourced pairwise similarity ratings. To assess the agreement among similarity ratings, we perform an evaluation under controlled conditions, obtaining a rank correlation of 0.33 between intersected sets of ratings. Combined with bag-of-features descriptors, we obtain performance gains of 31.1% and 10.9% for similarity rating prediction and song year prediction. For both tasks, analysis of selected descriptors reveals that representing features at multiple time scales benefits prediction accuracy.Comment: 13 pages, 9 figures, 8 tables. Accepted versio

    Learning Audio Sequence Representations for Acoustic Event Classification

    Full text link
    Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still challenging. Previous methods mainly focused on designing the audio features in a 'hand-crafted' manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame-level. In this paper, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and a RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC

    The emotional contents of the ‘space’ in spatial music

    Get PDF
    Human spatial perception is how we understand places. Beyond understanding what is where (William James’ formulation of the psychological approach to perception); there are holistic qualities to places. We perceive places as busy, crowded, exciting, threatening or peaceful, calm, comfortable and so on. Designers of places spend a great deal of time and effort on these qualities; scientists rarely do. In the scientific world-view physical qualities and our emotive responses to them are neatly divided in the objective-subjective dichotomy. In this context, music has traditionally constituted an item in a place. Over the last two decades, development of “spatial music” has been within the prevailing engineering paradigm, informed by psychophysical data; here, space is an abstract, Euclidean 3-dimensional ‘container’ for events. The emotional consequence of spatial arrangements is not the main focus in this approach. This paper argues that a paradigm shift is appropriate, from ‘music-in-a-place’ to ‘music-as-a-place’ requiring a fundamental philosophical realignment of ‘meaning’ away from subjective response to include consequences-in-the-environment. Hence the hegemony of the subjective-objective dichotomy is questioned. There are precedents for this, for example in the ecological approach to perception (Gibson). An ecological approach to music-as-environment intrinsically treats the emotional consequences of spatio-musical arrangement holistically. A simplified taxonomy of the attributes of artificial spatial sound in this context will be discussed

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure

    Emotional classification of music using neural networks with the MediaEval dataset

    Get PDF
    The proven ability of music to transmit emotions provokes the increasing interest in the development of new algorithms for music emotion recognition (MER). In this work, we present an automatic system of emotional classification of music by implementing a neural network. This work is based on a previous implementation of a dimensional emotional prediction system in which a multilayer perceptron (MLP) was trained with the freely available MediaEval database. Although these previous results are good in terms of the metrics of the prediction values, they are not good enough to obtain a classification by quadrant based on the valence and arousal values predicted by the neural network, mainly due to the imbalance between classes in the dataset. To achieve better classification values, a pre-processing phase was implemented to stratify and balance the dataset. Three different classifiers have been compared: linear support vector machine (SVM), random forest, and MLP. The best results are obtained with the MLP. An averaged F-measure of 50% is obtained in a four-quadrant classification schema. Two binary classification approaches are also presented: one vs. rest (OvR) approach in four-quadrants and binary classifier in valence and arousal. The OvR approach has an average F-measure of 69%, and the second one obtained F-measure of 73% and 69% in valence and arousal respectively. Finally, a dynamic classification analysis with different time windows was performed using the temporal annotation data of the MediaEval database. The results obtained show that the classification F-measures in four quadrants are practically constant, regardless of the duration of the time window. Also, this work reflects some limitations related to the characteristics of the dataset, including size, class balance, quality of the annotations, and the sound features available
    corecore