6,529 research outputs found

    Efficient adaptive integration of functions with sharp gradients and cusps in n-dimensional parallelepipeds

    Full text link
    In this paper, we study the efficient numerical integration of functions with sharp gradients and cusps. An adaptive integration algorithm is presented that systematically improves the accuracy of the integration of a set of functions. The algorithm is based on a divide and conquer strategy and is independent of the location of the sharp gradient or cusp. The error analysis reveals that for a C0C^0 function (derivative-discontinuity at a point), a rate of convergence of n+1n+1 is obtained in RnR^n. Two applications of the adaptive integration scheme are studied. First, we use the adaptive quadratures for the integration of the regularized Heaviside function---a strongly localized function that is used for modeling sharp gradients. Then, the adaptive quadratures are employed in the enriched finite element solution of the all-electron Coulomb problem in crystalline diamond. The source term and enrichment functions of this problem have sharp gradients and cusps at the nuclei. We show that the optimal rate of convergence is obtained with only a marginal increase in the number of integration points with respect to the pure finite element solution with the same number of elements. The adaptive integration scheme is simple, robust, and directly applicable to any generalized finite element method employing enrichments with sharp local variations or cusps in nn-dimensional parallelepiped elements.Comment: 22 page

    Sparse Quadrature for High-Dimensional Integration with Gaussian Measure

    Full text link
    In this work we analyze the dimension-independent convergence property of an abstract sparse quadrature scheme for numerical integration of functions of high-dimensional parameters with Gaussian measure. Under certain assumptions of the exactness and the boundedness of univariate quadrature rules as well as the regularity of the parametric functions with respect to the parameters, we obtain the convergence rate O(N−s)O(N^{-s}), where NN is the number of indices, and ss is independent of the number of the parameter dimensions. Moreover, we propose both an a-priori and an a-posteriori schemes for the construction of a practical sparse quadrature rule and perform numerical experiments to demonstrate their dimension-independent convergence rates

    A continuous analogue of the tensor-train decomposition

    Full text link
    We develop new approximation algorithms and data structures for representing and computing with multivariate functions using the functional tensor-train (FT), a continuous extension of the tensor-train (TT) decomposition. The FT represents functions using a tensor-train ansatz by replacing the three-dimensional TT cores with univariate matrix-valued functions. The main contribution of this paper is a framework to compute the FT that employs adaptive approximations of univariate fibers, and that is not tied to any tensorized discretization. The algorithm can be coupled with any univariate linear or nonlinear approximation procedure. We demonstrate that this approach can generate multivariate function approximations that are several orders of magnitude more accurate, for the same cost, than those based on the conventional approach of compressing the coefficient tensor of a tensor-product basis. Our approach is in the spirit of other continuous computation packages such as Chebfun, and yields an algorithm which requires the computation of "continuous" matrix factorizations such as the LU and QR decompositions of vector-valued functions. To support these developments, we describe continuous versions of an approximate maximum-volume cross approximation algorithm and of a rounding algorithm that re-approximates an FT by one of lower ranks. We demonstrate that our technique improves accuracy and robustness, compared to TT and quantics-TT approaches with fixed parameterizations, of high-dimensional integration, differentiation, and approximation of functions with local features such as discontinuities and other nonlinearities

    Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

    Get PDF
    Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm

    Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition

    Get PDF
    Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient ANOVA-based stochastic circuit/MEMS simulator to extract efficiently the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is simulated efficiently by our simulator at the cost of only 10 minutes in MATLAB on a regular personal computer.Comment: 14 pages (IEEE double column), 11 figure, accepted by IEEE Trans CAD of Integrated Circuits and System

    Spectral tensor-train decomposition

    Get PDF
    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT decomposition and analyze its properties. We obtain results on the convergence of the decomposition, revealing links between the regularity of the function, the dimension of the input space, and the TT ranks. We also show that the regularity of the target function is preserved by the univariate functions (i.e., the "cores") comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting \textit{spectral tensor-train decomposition} combines the favorable dimension-scaling of the TT decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \texttt{TT-DMRG-cross} to obtain the TT decomposition of tensors resulting from suitable discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modifed set of Genz functions with dimension up to 100100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online.Comment: 33 pages, 19 figure

    Sparse grid quadrature on products of spheres

    Full text link
    We examine sparse grid quadrature on weighted tensor products (WTP) of reproducing kernel Hilbert spaces on products of the unit sphere, in the case of worst case quadrature error for rules with arbitrary quadrature weights. We describe a dimension adaptive quadrature algorithm based on an algorithm of Hegland (2003), and also formulate a version of Wasilkowski and Wozniakowski's WTP algorithm (1999), here called the WW algorithm. We prove that the dimension adaptive algorithm is optimal in the sense of Dantzig (1957) and therefore no greater in cost than the WW algorithm. Both algorithms therefore have the optimal asymptotic rate of convergence given by Theorem 3 of Wasilkowski and Wozniakowski (1999). A numerical example shows that, even though the asymptotic convergence rate is optimal, if the dimension weights decay slowly enough, and the dimensionality of the problem is large enough, the initial convergence of the dimension adaptive algorithm can be slow.Comment: 34 pages, 6 figures. Accepted 7 January 2015 for publication in Numerical Algorithms. Revised at page proof stage to (1) update email address; (2) correct the accent on "Wozniakowski" on p. 7; (3) update reference 2; (4) correct references 3, 18 and 2
    • …
    corecore