1,199 research outputs found

    Transposable regularized covariance models with an application to missing data imputation

    Full text link
    Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so-called transposable regularized covariance models allow for maximum likelihood estimation of the mean and nonsingular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS314 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fast Hadamard transforms for compressive sensing of joint systems: measurement of a 3.2 million-dimensional bi-photon probability distribution

    Get PDF
    We demonstrate how to efficiently implement extremely high-dimensional compressive imaging of a bi-photon probability distribution. Our method uses fast-Hadamard-transform Kronecker-based compressive sensing to acquire the joint space distribution. We list, in detail, the operations necessary to enable fast-transform-based matrix-vector operations in the joint space to reconstruct a 16.8 million-dimensional image in less than 10 minutes. Within a subspace of that image exists a 3.2 million-dimensional bi-photon probability distribution. In addition, we demonstrate how the marginal distributions can aid in the accuracy of joint space distribution reconstructions

    Renormalization of trace distance and multipartite entanglement close to the quantum phase transitions of one- and two-dimensional spin-chain systems

    Full text link
    We investigate the quantum phase transitions of spin systems in one and two dimensions by employing trace distance and multipartite entanglement along with real-space quantum renormalization group method. As illustration examples, a one-dimensional and a two-dimensional XYXY models are considered. It is shown that the quantum phase transitions of these spin-chain systems can be revealed by the singular behaviors of the first derivatives of renormalized trace distance and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized trace distance and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical points
    • …
    corecore