1,647 research outputs found

    A Graph-Based Semi-Supervised k Nearest-Neighbor Method for Nonlinear Manifold Distributed Data Classification

    Get PDF
    kk Nearest Neighbors (kkNN) is one of the most widely used supervised learning algorithms to classify Gaussian distributed data, but it does not achieve good results when it is applied to nonlinear manifold distributed data, especially when a very limited amount of labeled samples are available. In this paper, we propose a new graph-based kkNN algorithm which can effectively handle both Gaussian distributed data and nonlinear manifold distributed data. To achieve this goal, we first propose a constrained Tired Random Walk (TRW) by constructing an RR-level nearest-neighbor strengthened tree over the graph, and then compute a TRW matrix for similarity measurement purposes. After this, the nearest neighbors are identified according to the TRW matrix and the class label of a query point is determined by the sum of all the TRW weights of its nearest neighbors. To deal with online situations, we also propose a new algorithm to handle sequential samples based a local neighborhood reconstruction. Comparison experiments are conducted on both synthetic data sets and real-world data sets to demonstrate the validity of the proposed new kkNN algorithm and its improvements to other version of kkNN algorithms. Given the widespread appearance of manifold structures in real-world problems and the popularity of the traditional kkNN algorithm, the proposed manifold version kkNN shows promising potential for classifying manifold-distributed data.Comment: 32 pages, 12 figures, 7 table

    Developing New Approaches for Intrusion Detection in Converged Networks

    Get PDF

    Implementation of Anomaly Based Network Intrusion Detection by Using Q-learning Technique

    Get PDF
    Network Intrusion detection System (NIDS) is an intrusion detection system that tries to discover malicious activity such as service attacks, port scans or even attempts to break into computers by monitoring network traffic. Data mining techniques make it possible to search large amounts of data for characteristic rules and patterns. If applied to network monitoring data recorded on a host or in a network, they can be used to detect intrusions, attacks or anomalies. We proposed “machine learning method”, cascading Principal Component Analysis (PCA) and the Q-learning methods to classifying anomalous and normal activities in a computer network. This paper investigates the use of PCA to reduce high dimensional data and to improve the predictive performance. On the reduced data, representing a density region of normal or anomaly instances, Q-learning strategies are applied for the creation of agents that can adapt to unknown, complex environments. We attempted to create an agent that would learn to explore an environment and collect the malicious within it. We obtained interesting results where agents were able to re-adapt their learning quickly to the new traffic and network information as compare to the other machine learning method such as supervised learning and unsupervised learning. Keywords: Intrusion, Anomaly Detection, Data Mining, KDD Cup’99, PCA, Q-learning

    Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier features

    Full text link
    One-class support vector machine (OC-SVM) for a long time has been one of the most effective anomaly detection methods and extensively adopted in both research as well as industrial applications. The biggest issue for OC-SVM is yet the capability to operate with large and high-dimensional datasets due to optimization complexity. Those problems might be mitigated via dimensionality reduction techniques such as manifold learning or autoencoder. However, previous work often treats representation learning and anomaly prediction separately. In this paper, we propose autoencoder based one-class support vector machine (AE-1SVM) that brings OC-SVM, with the aid of random Fourier features to approximate the radial basis kernel, into deep learning context by combining it with a representation learning architecture and jointly exploit stochastic gradient descent to obtain end-to-end training. Interestingly, this also opens up the possible use of gradient-based attribution methods to explain the decision making for anomaly detection, which has ever been challenging as a result of the implicit mappings between the input space and the kernel space. To the best of our knowledge, this is the first work to study the interpretability of deep learning in anomaly detection. We evaluate our method on a wide range of unsupervised anomaly detection tasks in which our end-to-end training architecture achieves a performance significantly better than the previous work using separate training.Comment: Accepted at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD) 201
    • …
    corecore