187 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Physics-inspired methods for networking and communications

    Get PDF
    Advances in statistical physics relating to our understanding of large-scale complex systems have recently been successfully applied in the context of communication networks. Statistical mechanics methods can be used to decompose global system behavior into simple local interactions. Thus, large-scale problems can be solved or approximated in a distributed manner with iterative lightweight local messaging. This survey discusses how statistical physics methodology can provide efficient solutions to hard network problems that are intractable by classical methods. We highlight three typical examples in the realm of networking and communications. In each case we show how a fundamental idea of statistical physics helps solve the problem in an efficient manner. In particular, we discuss how to perform multicast scheduling with message passing methods, how to improve coding using the crystallization process, and how to compute optimal routing by representing routes as interacting polymers

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Planeación y despliegue de la red de sensores inalámbricos requerida para la medición inteligente de energía eléctrica usando restricciones de capacidad y cobertura

    Get PDF
    The electrical energy measurement (EEM), seeks to provide quality services without neglecting the reliability of the system. Therefore, a quality service must be closely linked to the wireless communication technologies, to technify the EEM, not only reading, but also cuts, reconnections, and other additional services that the intelligent measurement infrastructure provides through wireless technologies Such as cell or WiFi, increasingly common because of the reliability they provide in real-time data transmission. Wireless infrastructures allow us to provide coverage to the fixed terminals, determined by the electric meter, and in turn manage and plan the optimal deployment of wireless sensors (SI) in finite areas, whether urban, rural or suburban. This article proposes an optimal model for planning and deploying SI for the EEM in order to guarantee reliable wireless communication links at the lowest implementation cost. Therefore, the proposed algorithm gives global solutions within a finite scenario, making this a scalable model in time able to manage the use of available links. The SIs for the EEM are inserted into the Neighborhood Area Networks (NANs) covered by the mobile communications network.La medición de energía eléctrica (MEE), busca proporcionar servicios de calidad sin descuidar la confiabilidad del sistema. Por lo tanto, un servicio de calidad debe ir estrechamente ligada a las tecnologías de comunicación inalámbrica, para tecnificar la MEE, no solo lectura, sino también cortes, reconexiones, y otros servicios adicionales que la infraestructura de medición inteligente provee a través de tecnologías inalámbricas como celular o WiFi, cada vez más comunes debido a la confiabilidad que estas brindan en la transmisión de datos en tiempo real [1]. Las infraestructuras inalámbricas nos permiten brindar cobertura a los terminales fijos, determinados por el medidor eléctrico, y a su vez gestionar y planificar el óptimo despliegue de sensores inalámbricos (SI) en áreas finitas, ya sean, urbanas, rurales o suburbanas. Este artículo propone un modelo óptimo de planeación y despliegue de SI para la MEE con la finalidad de garantizar enlaces de comunicación inalámbricos confiables al menor costo de implementación. Por lo tanto, el algoritmo propuesto da soluciones globales dentro de un escenario finito, haciendo de este un modelo escalable en el tiempo capaz de gestionar el uso de enlaces disponibles. Los SI para la MEE, son insertados en las Redes de Área Vecindaria (NAN) cubiertas por la red de comunicaciones móviles

    Adaptive load balancing routing algorithms for the next generation wireless telecommunications networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel UniversityWith the rapid development of wireless networks, mesh networks are evolving as a new important technology, presenting a high research and commercial interest. Additionally, wireless mesh networks have a wide variety of applications, offering the ability to provide network access in both rural and urban areas with low cost of maintenance. One of the main functionalities of a wireless mesh network is load balancing routing, which is the procedure of finding the best, according to some criteria, routes that data need to follow to transfer from one node to another. Routing is one of the state-of-the-art areas of research because the current algorithms and protocols are not efficient and effective due to the diversity of the characteristics of these networks. In this thesis, two new routing algorithms have been developed for No Intra-Cell Interference (NICI) and Limited Intra-Cell Interference (LICI) networks based on WiMAX, the most advanced wireless technology ready for deployment. The algorithms created are based on the classical Dijkstra and Ford-Fulkerson algorithms and can be implemented in the cases of unicast and multicast transmission respectively.State scholarships foundation of Greece
    corecore